VALLEY METRO LRT
DESIGN CRITERIA MANUAL

PREFACE

The Valley Metro LRT Design Criteria Manual has been developed as a set of general guidelines as well as providing specific criteria to be employed in the preparation and implementation of the planning, design and construction of new light rail corridors and the extension of existing corridors. This 2014 issue of the Light Rail Design Criteria Manual was developed to remain in compliance with accepted practices with regard to safety and compatibility with Valley Metro's existing system and the intended future systems that will be constructed. The manual reflects the most current accepted practices and applicable codes in use by the industry.

The intent of this manual is to establish general criteria to be used in the planning and design process. However, deviations from these accepted criteria may be required in specific instances. Any such deviations from these accepted criteria must be submitted on the design deviation request included in Appendix A.

Coordination with local agencies and jurisdictions is still required for the determination and approval for fire protection, life safety, and security measures that will be implemented as part of the planning and design of the LRT system. Conflicting information or directives between the criteria set forth in this manual shall be brought to the attention of Valley Metro and will be addressed and resolved between Valley Metro and the local agencies and/or jurisdictions.

This manual will be updated periodically either in part or in whole as deemed appropriate by Valley Metro. Any updates or modifications to the manual will take precedence over previous versions or criteria at the time of approval of the updated material or sections of the manual.

Recommendation and Approval Signatures

Valley Metro:
Rick Brown
Chief Engineer

Ray Abraham
Chief, Transportation Officer

Gardner Tabon
Chief, Safety and Security
DESIGN CRITERIA MANUAL
REVIEW PARTICIPATION

Valley Metro thanks the following city representatives for their input in making this an all-encompassing Valley Metro LRT Design Criteria Manual. The purpose of these reviews was to create a forum for agencies and municipalities to work collaboratively with Valley Metro to update the light rail design guidelines. Valley Metro has updated each section of the design criteria manual based on such input. It is understood that this is a “living” document and is subject to change or revision, from time-to-time.

City of Phoenix - Maurice Goyette and Ray Almenzar

City of Tempe - Gregg Kent

City of Mesa - Marc Ahlstrom

City of Chandler - Warren White, Ann Marie Riley, Mike Mah, and Jason Crampton
Table of Contents

ACRONYMS AND ABBREVIATIONS... AA-1

1.0 GENERAL... 1-1
1.1 VALLEY METRO LRT SYSTEM... 1-1
1.2 INTRODUCTION... 1-1
1.3 DEFINITIONS... 1-1
1.4 CLIMATE CONDITIONS.. 1-9
1.5 SYSTEM TECHNOLOGY DESCRIPTION.. 1-9
1.6 SYSTEMWIDE GOALS... 1-9
 1.6.1 Proven Hardware... 1-9
 1.6.2 Design Life... 1-10
 1.6.3 Service Integration.. 1-10
 1.6.4 Urban Design Guidelines... 1-10
 1.6.5 Codes and Standards.. 1-10
 1.6.6 Sustainability... 1-11
1.7 CONCURRENT NON PROJECT ACTIVITIES (CNPA).. 1-11
1.8 COMPUTER AIDED DESIGN AND DRAFTING STANDARDS... 1-11
1.9 PRIMAVERA CONTRACT MANAGEMENT SYSTEM ... 1-12
1.10 DEVIATION REQUESTS.. 1-12

2.0 TRACK ALIGNMENT AND CLEARANCE.. 2-1
2.1 INTRODUCTION... 2-1
2.2 TRACK ALIGNMENT.. 2-1
 2.2.1 Horizontal Alignment... 2-2
 2.2.2 Vertical Alignment... 2-9
2.3 TRACK CLEARANCE REQUIREMENTS... 2-11
 2.3.1 General.. 2-11
 2.3.2 Track Clearance Envelope (Horizontal).. 2-12
 2.3.3 Special Clearance Situations.. 2-14
 2.3.4 Track Clearance Envelope (Vertical)... 2-15
 2.3.5 Track Spacing.. 2-15

3.0 CIVIL WORK... 3-1
3.1 INTRODUCTION... 3-1
3.2 SURVEY CONTROL.. 3-1
 3.2.1 Horizontal Control... 3-1
Table of Contents

3.2.2 Vertical Control ... 3-1
3.2.3 Right-of-Way Surveys ... 3-2
3.2.4 Design Surveys ... 3-2
3.2.5 Guideway ... 3-3
3.2.6 Transition Slabs ... 3-4

3.3 UTILITIES ... 3-4

3.3.1 Utility Location and Relocation Requirements 3-4
3.3.2 Valley Metro RUA Requirements .. 3-4
3.3.3 City of Phoenix RUA Requirements (Water and Sewer) 3-7
3.3.4 Definitions .. 3-7
3.3.5 Utility Design Reference ... 3-8
3.3.6 Utility Base Maps .. 3-9
3.3.7 Municipal Utilities .. 3-9
3.3.8 Private Utilities ... 3-10
3.3.9 Utility Service Requests .. 3-11
3.3.10 Salt River Project (SRP) Water License Requirements 3-11
3.3.11 Utility Coordination Meetings .. 3-11

3.4 DRAINAGE ... 3-11

3.4.1 Drainage Facilities Design ... 3-12
3.4.2 Precipitation – Intensity – Duration 3-12
3.4.3 Design Discharge ... 3-13
3.4.4 Storm Drain Design .. 3-13
3.4.5 Minimum Velocities .. 3-13
3.4.6 Minimum Pipe Sizes .. 3-13
3.4.7 Minimum Pipe Clearance .. 3-13
3.4.8 Pipe Material and Loading .. 3-14
3.4.9 Corrosion Protection .. 3-14
3.4.10 Manholes .. 3-14
3.4.11 Underdrains and Location ... 3-14
3.4.12 Slope Protection ... 3-15
3.4.13 Structural Design Codes, Manuals and Specifications 3-15
3.4.14 LRT Loading ... 3-15

3.5 RIGHT-OF-WAY .. 3-15

3.5.1 Types of Right-of-Way ... 3-15
3.5.2 Right-of-Way Criteria .. 3-16
3.5.3 Right-of-Way Information Requirements 3-18
3.5.4 Fencing .. 3-18

3.6 ACQUISITION PROCESS ... 3-18
3.7 ROADWAYS .. 3-19
 3.7.1 General .. 3-19
 3.7.2 Roadway Geometrics .. 3-19
 3.7.3 Traffic Lane Widths ... 3-20
 3.7.4 Bus Bays ... 3-20
 3.7.5 Paving ... 3-21
 3.7.6 Curbs and Curb Cuts .. 3-21
 3.7.7 Driveways and Alleys ... 3-22
 3.7.8 Sidewalks ... 3-22

4.0 TRACKWORK .. 4-1
 4.1 INTRODUCTION .. 4-1
 4.2 TRACK SYSTEM ... 4-1
 4.2.1 Trackwork Classification .. 4-1
 4.2.2 Track Construction Types .. 4-2
 4.2.3 Transition Slabs .. 4-3
 4.3 TRACK GAUGE AND WHEEL GAUGE ... 4-3
 4.3.1 Track Gauge ... 4-3
 4.3.2 Wheel Profile and Gauge .. 4-3
 4.3.3 Maintenance Equipment ... 4-3
 4.4 TRACK CONSTRUCTION TOLERANCES .. 4-4
 4.5 TRACK COMPONENTS ... 4-4
 4.5.1 Ballast-Subballast-Subgrade ... 4-4
 4.5.2 Crossties and Switch Ties .. 4-5
 4.5.3 Tee Rail and Girder Groove Rail .. 4-6
 4.5.4 Restraining Guardrail for Curved Track .. 4-7
 4.5.5 Special Trackwork Plates for Concrete Switch Ties .. 4-7
 4.5.6 Direct Fixation Rail Fasteners .. 4-8
 4.5.7 Direct Fixation Steel Shims ... 4-8
 4.5.8 Direct Fixation Special Trackwork ... 4-8
 4.5.9 Insulated Joint Bars ... 4-9
 4.5.10 Joint Bars .. 4-9
 4.5.11 Compromise Joints (Transition Rails) .. 4-9
 4.5.12 Derails .. 4-9
 4.5.13 Miscellaneous Track Appurtenances .. 4-9
 4.6 SPECIAL TRACKWORK ... 4-10
 4.6.1 Switch Machines – Power Operated and Manual .. 4-13
 4.7 AT – GRADE HIGHWAY CROSSINGS .. 4-13
Table of Contents

1. **VALLEY METRO RAIL TRANSIT PROJECTS**

4.8 TRACTION POWER – IMPACT ON TRACK ... 4-13
4.9 SIGNALING AND TRAIN CONTROL – IMPACT ON TRACK 4-14
4.10 RAIL GRINDING OR BRUSHING .. 4-14
4.11 NOISE AND VIBRATION ATTENUATION .. 4-15

5.0 STRUCTURAL DESIGN .. 5-1
5.1 INTRODUCTION ... 5-1
5.2 DESIGN CODES, MANUALS AND SPECIFICATIONS 5-1
5.3 LOADS AND FORCES .. 5-2
 5.3.1 Dead Load ... 5-2
 5.3.2 Live Loads ... 5-2
 5.3.3 Impact ... 5-3
 5.3.4 Derailment Loads ... 5-3
 5.3.5 Other Loads and Forces ... 5-4
5.4 SEISMIC DESIGN ... 5-5
5.5 SOILS AND GEOLOGIC DATA ... 5-5
5.6 REINFORCED AND PRESTRESSED CONCRETE 5-5
5.7 STRUCTURAL STEEL ... 5-5
5.8 EARTH RETAINING STRUCTURES ... 5-6
5.9 UNDERGROUND STRUCTURES ... 5-6
 5.9.1 Reinforced Concrete Box Line and Station Section 5-6
 5.9.2 Reinforced Concrete Retaining Walls .. 5-7
 5.9.3 Shafts .. 5-7
 5.9.4 Sound Walls .. 5-8
5.10 PORTALS AND U-SECTIONS ... 5-8
5.11 AERIAL STRUCTURES .. 5-8
 5.11.1 Design Specifications .. 5-9
 5.11.2 Application of Loadings ... 5-9
 5.11.3 Reduction in Load Intensity .. 5-9
 5.11.4 Special Design Considerations ... 5-9
5.12 SUPPORT AND UNDERPINNING OF EXISTING STRUCTURES 5-10
5.13 SUPPORT OF EXCAVATION STRUCTURES 5-11

6.0 STATION DESIGN ... 6-1
6.1 INTRODUCTION ... 6-1
6.2 CODES AND STANDARDS ... 6-1
 6.2.1 Applicable Codes and Standards .. 6-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>Development Permitting Process</td>
</tr>
<tr>
<td>6.3</td>
<td>STATION GEOMETRICS</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Configuration</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Platform Length (Calculated Platform)</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Platform Width</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Travel Lanes / Exit Lanes</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Vertical Clearances</td>
</tr>
<tr>
<td>6.4</td>
<td>STATION AMENITIES</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Shading and Climate Protection</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Seating</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Restrooms</td>
</tr>
<tr>
<td>6.4.4</td>
<td>System Support Element</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Advertising</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Drinking fountains</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Trash Receptacles</td>
</tr>
<tr>
<td>6.4.8</td>
<td>Hose Bibs</td>
</tr>
<tr>
<td>6.4.9</td>
<td>Electrical Convenience Outlets</td>
</tr>
<tr>
<td>6.4.10</td>
<td>Patron Information (Maps)</td>
</tr>
<tr>
<td>6.4.11</td>
<td>Emergency Call Boxes (ECBs)</td>
</tr>
<tr>
<td>6.4.12</td>
<td>Closed Circuit Television Cameras (CCTVs)</td>
</tr>
<tr>
<td>6.4.13</td>
<td>Public Address System (PA)/Variable Message Boards (VMBs)</td>
</tr>
<tr>
<td>6.4.14</td>
<td>Art</td>
</tr>
<tr>
<td>6.5</td>
<td>ACCESSIBILITY FOR INDIVIDUALS WITH DISABILITIES</td>
</tr>
<tr>
<td>6.6</td>
<td>LIGHTING</td>
</tr>
<tr>
<td>6.7</td>
<td>VERTICAL CIRCULATION</td>
</tr>
<tr>
<td>6.8</td>
<td>STATION SITE</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Pedestrian Access</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Bus</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Bicycles</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Kiss-and-Ride</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Park-and-Ride</td>
</tr>
<tr>
<td>6.8.6</td>
<td>Fencing or Walls</td>
</tr>
<tr>
<td>6.8.7</td>
<td>Signage</td>
</tr>
<tr>
<td>6.8.8</td>
<td>Landscaping</td>
</tr>
<tr>
<td>6.9</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Safety</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Ease of Maintenance</td>
</tr>
</tbody>
</table>
6.9.3 List of Potential Finish Materials ... 6-19

7.0 OPERATIONS ... 7-1
 7.1 INTRODUCTION .. 7-1
 7.2 OPERATIONAL OBJECTIVES .. 7-1
 7.3 SAFETY AND SECURITY RELATED CRITERIA ... 7-1
 7.3.1 LRT Transportation .. 7-2
 7.3.2 Light Rail Vehicles ... 7-3
 7.3.3 Train Movements ... 7-3
 7.3.4 Stations .. 7-4
 7.3.5 Grade Crossings ... 7-5
 7.3.6 Regulatory Considerations ... 7-5
 7.4 RELIABILITY RELATED CRITERIA .. 7-5
 7.4.1 Service Reliability Tolerances .. 7-5
 7.4.2 Operational Considerations ... 7-6
 7.4.3 Preventive Maintenance Measures ... 7-7
 7.4.4 Preparatory Measures ... 7-7
 7.4.5 Traction Power Systems ... 7-10
 7.5 PASSENGER CONVENIENCE RELATED CRITERIA ... 7-10
 7.5.1 Operational Planning Considerations ... 7-10
 7.5.2 Light Rail Vehicles ... 7-12
 7.5.3 Stations .. 7-12
 7.6 OPERATIONAL COST-EFFECTIVENESS .. 7-12
 7.6.1 Operational Planning Considerations ... 7-13
 7.6.2 Maintenance Planning Considerations .. 7-13

8.0 VEHICLE ... 8-1
 8.1 TRACKWORK CHARACTERISTICS ... 8-1
 8.2 POWER SYSTEM CHARACTERISTICS .. 8-2
 8.3 GENERAL VEHICLE CHARACTERISTICS .. 8-2
 8.3.1 General .. 8-2
 8.3.2 Operating Characteristics .. 8-3
 8.3.3 Critical Vehicle Dimensions ... 8-3
 8.3.4 Passenger Doors ... 8-5
 8.3.5 Wheel Dimensions ... 8-5
 8.3.6 Truck Dimensions ... 8-6
 8.3.7 Wheel Profile .. 8-6
 8.3.8 Anticlimbers ... 8-6
Table of Contents

8.3.9 Bumpers

8.3.10 Couplers

8.3.11 Controlled Collapse Cab

8.3.12 Vehicle Management System

8.4 VEHICLE DYNAMIC SWEPT ENVELOPES

8.4.2 Vehicle Dynamic Envelope on Curved Track

8.5 VEHICLE WEIGHT AND DESIGN LOADING

8.6 VEHICLE PERFORMANCE

8.6.1 Supply Voltage

8.6.2 Operation Under Reduced Supply Voltage

8.6.3 Maximum Line Current

8.6.4 Acceleration

8.6.5 Service Braking

8.6.6 Emergency Braking

8.6.7 Parking Brake

8.6.8 Operating Speed

8.6.9 Duty Cycle

8.6.10 Annual Average Mileage

8.6.11 On-Board Diagnostics

8.7 PASSENGER COMFORT

8.7.1 Heating Ventilation and Air Conditioning

8.7.2 Noise Levels

8.7.3 Ride Quality

8.7.4 Interior Lighting

8.7.5 Interior Design

8.8 RELIABILITY

8.9 MAINTAINABILITY

9.0 OPERATIONS AND MAINTENANCE FACILITIES

9.1 INTRODUCTION

9.1.1 Site Selection

9.1.2 Maintenance of Equipment Shop (MOE)

9.1.3 Service and Cleaning Area (S&C)

9.1.4 LRV Washer

9.1.5 LRV Storage and Yard Tracks

9.1.6 Maintenance of Way Shop (MOW)

9.1.7 Entry Station

9.1.8 Employee, Visitor and Authority Parking
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.9</td>
<td>Traction Power Substations</td>
<td>9-5</td>
</tr>
<tr>
<td>9.1.10</td>
<td>Signal and Communication Houses</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1.11</td>
<td>Internal Road Circulation System</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1.12</td>
<td>Utilities</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1.13</td>
<td>Landscaping</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1.14</td>
<td>Miscellaneous Structures</td>
<td>9-6</td>
</tr>
<tr>
<td>9.1.15</td>
<td>Historical Trolley (Future)</td>
<td>9-7</td>
</tr>
<tr>
<td>9.1.16</td>
<td>Special Site Requirements</td>
<td>9-7</td>
</tr>
<tr>
<td>9.1.17</td>
<td>Items Not Included At Future Maintenance Facility Sites</td>
<td>9-7</td>
</tr>
<tr>
<td>9.1.18</td>
<td>Codes, Ordinances and Guidelines</td>
<td>9-7</td>
</tr>
<tr>
<td>10.0</td>
<td>Traction Power</td>
<td>10-1</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2</td>
<td>Requirements</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Traction Power Substations</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Utility Power Supply</td>
<td>10-1</td>
</tr>
<tr>
<td>10.2.3</td>
<td>DC Feeder System</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Overhead Contact System</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2.5</td>
<td>Codes and Standards</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Systems Integration</td>
<td>10-2</td>
</tr>
<tr>
<td>10.2.7</td>
<td>Ambient Conditions</td>
<td>10-2</td>
</tr>
<tr>
<td>10.3</td>
<td>System Voltages</td>
<td>10-2</td>
</tr>
<tr>
<td>10.4</td>
<td>Basis for Substation Location, Spacing, and Rating</td>
<td>10-3</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Normal Operation</td>
<td>10-3</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Contingency Operation</td>
<td>10-4</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Assigned Weight and Capacity</td>
<td>10-4</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Special Events Operation</td>
<td>10-4</td>
</tr>
<tr>
<td>10.5</td>
<td>Traction Power Substations</td>
<td>10-4</td>
</tr>
<tr>
<td>10.5.1</td>
<td>General</td>
<td>10-4</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Substation Traction Power Equipment</td>
<td>10-5</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Pad-Mounted Disconnect/Bypass Switch</td>
<td>10-7</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Substation Enclosure</td>
<td>10-7</td>
</tr>
<tr>
<td>10.5.5</td>
<td>Substation Foundation</td>
<td>10-8</td>
</tr>
<tr>
<td>10.5.6</td>
<td>Substation Grounding</td>
<td>10-8</td>
</tr>
<tr>
<td>10.5.7</td>
<td>Ventilation</td>
<td>10-9</td>
</tr>
<tr>
<td>10.5.8</td>
<td>Miscellaneous</td>
<td>10-9</td>
</tr>
<tr>
<td>10.6</td>
<td>DC Feeder System</td>
<td>10-12</td>
</tr>
<tr>
<td>10.6.1</td>
<td>General</td>
<td>10-12</td>
</tr>
</tbody>
</table>
10.7 OVERHEAD CONTACT SYSTEM ... 10-14
- 10.7.1 General .. 10-14
- 10.7.2 Sectionalization .. 10-14
- 10.7.3 Disconnect Switches .. 10-15
- 10.7.4 OCS Configuration .. 10-15
- 10.7.5 Operations .. 10-16
- 10.7.6 Contact Wire Height .. 10-16
- 10.7.7 Loading ... 10-17
- 10.7.8 Spans Length and Staggers .. 10-18
- 10.7.9 Catenary Conductors ... 10-18
- 10.7.10 Construction and Maintenance Tolerance .. 10-19
- 10.7.11 Poles and Foundations .. 10-19
- 10.7.12 Electrical Clearances .. 10-20
- 10.7.13 OCS Support Assemblies .. 10-20
- 10.7.14 OCS Tensioning ... 10-21
- 10.7.15 OCS Grounding and Bonding .. 10-21

10.8 NEGATIVE RETURN SYSTEM .. 10-22

10.9 CORROSION CONTROL .. 10-22

10.10 TRACTION POWER REMOTE CONTROL ... 10-23

10.11 LIGHT RAIL VEHICLES ... 10-23

11.0 SIGNALING .. 11-1
- 11.1 INTRODUCTION ... 11-1
- 11.2 FUNCTIONAL DESIGN REQUIREMENTS ... 11-1
- 11.3 OPERATIONAL DESIGN REQUIREMENTS .. 11-2
- 11.4 ENVIRONMENTAL DESIGN .. 11-3
- 11.5 ELECTROMAGNETIC INTERFERENCE (EMI) ... 11-3
- 11.6 GROWTH AND EXPANSION ... 11-4
- 11.7 CODES AND STANDARDS ... 11-4
- 11.8 SIGNAL CIRCUITRY .. 11-5
- 11.9 TRAIN-TO-WAYSIDE COMMUNICATIONS (TWC) .. 11-6
- 11.10 STORAGE YARDS ... 11-6
- 11.11 SWITCH MACHINES ... 11-7
- 11.12 SIGNALS ... 11-7
11.12.1 LRT (Bar) Signal Aspects ... 11-8
11.12.2 Color Light Signal Aspects .. 11-8
11.12.3 Manual Switch Position Indicator Aspects ... 11-8

11.13 AUTOMATIC HIGHWAY CROSSING WARNING SYSTEMS 11-9

11.14 INTERFACE REQUIREMENTS .. 11-9
11.14.1 Street Traffic Signal System Interface ... 11-9
11.14.2 Vehicle Interface ... 11-10
11.14.3 Trackwork Interface ... 11-10
11.14.4 Traction Power System Interface ... 11-10
11.14.5 Communications Interface ... 11-11

11.15 TRACK CIRCUITS ... 11-11

11.16 POWER ... 11-11

11.17 HOUSES ... 11-12
11.17.1 Ventilation ... 11-12
11.17.2 Monitoring and Alarm System ... 11-13
11.17.3 Interior and Exterior Lighting ... 11-13
11.17.4 Telephone and Data .. 11-14
11.17.5 Work Table ... 11-14

11.18 WAYSIDE CASES ... 11-14

11.19 INSTALLATION ... 11-15

11.20 QUALITY, RELIABILITY AND MAINTAINABILITY 11-15

11.21 SYSTEMS INTEGRATION ... 11-15

12.0 COMMUNICATIONS .. 12-1

12.1 INTRODUCTION ... 12-1
12.1.1 Codes and Standards .. 12-2

12.2 COMMUNICATIONS SUBSYSTEMS ... 12-2
12.2.1 Radio ... 12-2

12.3 TELEPHONE ... 12-6
12.3.1 Public Address .. 12-7
12.3.2 Variable Message Boards ... 12-8
12.3.3 Closed Circuit Television ... 12-8
12.3.4 Carrier Transmission Subsystem .. 12-9
12.3.5 Supervisory Control and Data Acquisition 12-10
12.3.6 Central Control System (CCS) .. 12-11
12.3.7 Access Control .. 12-12
12.3.8 Fire Detection and Suppression Monitoring 12-12
12.4 UNINTERRUPTABLE POWER SUPPLIES ... 12-13
 12.4.1 Systems Integration ... 12-13

13.0 FARE COLLECTION ... 13-1
 13.1 INTRODUCTION .. 13-1
 13.2 DESIGN OBJECTIVES ... 13-1
 13.3 DESIGN APPROACH .. 13-1
 13.3.1 System Conformity .. 13-1
 13.3.2 LRT Fare Control ... 13-1
 13.4 DESIGN CRITERIA .. 13-2
 13.4.1 Fare Structure and Fare Media .. 13-2
 13.4.2 Fare Collection Equipment Types .. 13-2
 13.4.3 Fare Collection Equipment Location .. 13-2
 13.4.4 Fare Collection Equipment Quantities .. 13-3
 13.4.5 Installation Requirements and Restrictions 13-3
 13.4.6 Conduits and Cabling .. 13-3
 13.4.7 General Equipment Requirements ... 13-4
 13.4.8 Handheld Verifier ... 13-9
 13.4.9 Fare Vending Equipment ... 13-9
 13.4.10 Central Computer System (CCS) ... 13-16
 13.5 SYSTEMS INTEGRATION ... 13-18

14.0 LANDSCAPE ... 14-1
 14.1 BASIC GOALS ... 14-1
 14.2 STATION AND TRACKWAY GOALS .. 14-2
 14.2.1 Design Intent .. 14-2
 14.2.2 Pedestrian Shade .. 14-2
 14.2.3 Plant Longevity ... 14-3
 14.2.4 Pedestrian Safety or Security ... 14-3
 14.2.5 Structural Soil .. 14-3
 14.3 PARK-AND-RIDE LOTS .. 14-4
 14.3.1 Design Intent .. 14-4
 14.3.2 Parking Lots ... 14-4
 14.3.3 Pedestrian Shade .. 14-4
 14.3.4 Wayfinding ... 14-5
 14.4 HARDSCAPE .. 14-5
 14.5 GRADING AND SLOPES .. 14-5
 14.6 PLANT MATERIAL ... 14-6
Table of Contents

14.7 CODES AND STANDARDS ... 14-7

15.0 ELECTRICAL FACILITIES .. 15-1

15.1 INTRODUCTION .. 15-1

15.1.1 Scope .. 15-1
15.1.2 Codes, Regulations and Standards .. 15-2
15.1.3 Local Codes and Regulations .. 15-2
15.1.4 National Codes and Standards .. 15-2
15.1.5 Interpretation .. 15-3
15.1.6 Design Guidelines .. 15-3
15.1.7 Definitions ... 15-4
15.1.8 Environmental Considerations .. 15-4
15.1.9 Selection of Materials and Equipment .. 15-4

15.2 DISTRIBUTION SYSTEM ... 15-5

15.2.1 General .. 15-5
15.2.2 Classification of Electrical Loads ... 15-6
15.2.3 Reliability and Load Transfer Requirements 15-6
15.2.4 Loading of Distribution Equipment and Feeders 15-7
15.2.5 Voltage Levels and Control .. 15-8
15.2.6 Spare Capacity .. 15-8
15.2.7 Spaces for Electrical Equipment ... 15-9
15.2.8 Wiring Methods and Materials ... 15-9
15.2.9 Electrical Equipment and Devices ... 15-12
15.2.10 Supply from Traction Power Substations 15-14

15.3 ELECTRICAL SERVICE .. 15-14

15.3.1 General .. 15-14
15.3.2 Supply Voltage Levels and Limits ... 15-15

15.4 EMERGENCY POWER SUPPLY .. 15-15

15.5 GROUNDING ... 15-15

15.5.1 Passenger Station Grounding System 15-15
15.5.2 Grounding Requirements ... 15-16

15.6 GENERAL AREA LIGHTING .. 15-17

15.6.1 General ... 15-17
15.6.2 Calculations .. 15-18
15.6.3 Illuminance Values .. 15-19
15.6.4 Light Control .. 15-21
15.6.5 Emergency Illuminance Values ... 15-21
15.6.6 Emergency Lighting .. 15-22
15.6.7 Emergency Lighting Control ... 15-22

15.7 STREET LIGHTING .. 15-22

15.7.1 General ... 15-22
15.7.2 City of Phoenix .. 15-22
15.7.3 City of Mesa .. 15-22
15.7.4 City of Tempe ... 15-23
15.7.5 City of Glendale ... 15-23
15.7.6 Salt River Project ... 15-23
15.7.7 Arizona Public Service ... 15-23
15.7.8 Arizona Department of Transportation .. 15-23

16.0 TRAFFIC CONTROL .. 16-1

16.1 INTRODUCTION ... 16-1
16.2 APPLICABLE STANDARDS ... 16-1
16.3 GENERAL DESIGN CRITERIA ... 16-1
16.4 LOCATIONS OF TRAIN INTERFACE WITH TRAFFIC 16-1
16.5 CONTROL OF TRAIN INTERFACE WITH TRAFFIC 16-2
16.6 SIGN DESIGN .. 16-4
16.7 PAVEMENT MARKING DESIGN ... 16-4
16.8 GENERAL OPERATIONS ... 16-5

17.0 SAFETY ... 17-1

17.1 INTRODUCTION ... 17-1
17.2 SYSTEM SAFETY PROGRAM ... 17-1
17.3 SYSTEM SAFETY CRITERIA ... 17-1
17.4 SYSTEM SAFETY PROGRAM PLAN ... 17-4
17.4.1 Purpose, Goal, Objectives ... 17-4
17.5 PROJECT SAFETY ORGANIZATION .. 17-5
17.5.1 Fire/Life Safety and Security Committee .. 17-5
17.5.2 Safety and Security Certification Review Committee 17-6
17.6 HAZARD IDENTIFICATION, ANALYSIS AND RESOLUTION 17-6
17.7 CONSTRUCTION SAFETY ... 17-6
17.8 SAFETY AND SECURITY CERTIFICATION PROGRAM 17-6
17.9 DETAILED SAFETY CRITERIA .. 17-8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.0</td>
<td>SECURITY</td>
<td>18-1</td>
</tr>
<tr>
<td>18.1</td>
<td>INTRODUCTION</td>
<td>18-1</td>
</tr>
<tr>
<td>18.2</td>
<td>PASSENGER SECURITY</td>
<td>18-1</td>
</tr>
<tr>
<td>18.3</td>
<td>EMPLOYEE SECURITY</td>
<td>18-2</td>
</tr>
<tr>
<td>18.4</td>
<td>FACILITY SECURITY</td>
<td>18-2</td>
</tr>
<tr>
<td>18.5</td>
<td>SYSTEM SECURITY PROGRAM PLAN</td>
<td>18-2</td>
</tr>
<tr>
<td>18.5.1</td>
<td>Purpose of the System Security Program Plan</td>
<td>18-2</td>
</tr>
<tr>
<td>18.5.2</td>
<td>Implementing the System Security Program Plan</td>
<td>18-3</td>
</tr>
<tr>
<td>18.6</td>
<td>INFORMATION & INFORMATION SYSTEMS SECURITY</td>
<td>18-4</td>
</tr>
<tr>
<td>18.7</td>
<td>DETAILED SECURITY CRITERIA</td>
<td>18-5</td>
</tr>
<tr>
<td>19.0</td>
<td>STRAY CURRENT AND CORROSION CONTROL</td>
<td>19-1</td>
</tr>
<tr>
<td>19.1</td>
<td>INTRODUCTION</td>
<td>19-1</td>
</tr>
<tr>
<td>19.2</td>
<td>SCOPE</td>
<td>19-1</td>
</tr>
<tr>
<td>19.3</td>
<td>PRE-DESIGN SURVEYING AND TESTING</td>
<td>19-1</td>
</tr>
<tr>
<td>19.4</td>
<td>STRAY CURRENT CONTROL</td>
<td>19-2</td>
</tr>
<tr>
<td>19.5</td>
<td>TRACKWORK</td>
<td>19-2</td>
</tr>
<tr>
<td>19.5.1</td>
<td>Ballasted Track Construction</td>
<td>19-2</td>
</tr>
<tr>
<td>19.5.2</td>
<td>Embedded Track Construction</td>
<td>19-2</td>
</tr>
<tr>
<td>19.5.3</td>
<td>Direct Fixation Track Construction</td>
<td>19-3</td>
</tr>
<tr>
<td>19.5.4</td>
<td>Track-to-Earth Resistance Testing</td>
<td>19-3</td>
</tr>
<tr>
<td>19.5.5</td>
<td>Special Trackwork and Hardware</td>
<td>19-3</td>
</tr>
<tr>
<td>19.6</td>
<td>TRACTION POWER FACILITIES AND SUBSYSTEMS</td>
<td>19-3</td>
</tr>
<tr>
<td>19.6.1</td>
<td>Traction Power Substations</td>
<td>19-3</td>
</tr>
<tr>
<td>19.6.2</td>
<td>Overhead Contact System</td>
<td>19-4</td>
</tr>
<tr>
<td>19.6.3</td>
<td>Negative Distribution System</td>
<td>19-4</td>
</tr>
<tr>
<td>19.7</td>
<td>REINFORCED CONCRETE STRUCTURES</td>
<td>19-5</td>
</tr>
<tr>
<td>19.7.1</td>
<td>General Provisions</td>
<td>19-5</td>
</tr>
<tr>
<td>19.7.2</td>
<td>Bridge Structures</td>
<td>19-5</td>
</tr>
<tr>
<td>19.7.3</td>
<td>Retaining Walls</td>
<td>19-7</td>
</tr>
<tr>
<td>19.7.4</td>
<td>Embedded Track Slabs</td>
<td>19-7</td>
</tr>
<tr>
<td>19.8</td>
<td>MAINTENANCE FACILITY</td>
<td>19-8</td>
</tr>
<tr>
<td>19.8.1</td>
<td>Track</td>
<td>19-8</td>
</tr>
<tr>
<td>19.8.2</td>
<td>Traction Power</td>
<td>19-8</td>
</tr>
<tr>
<td>19.8.3</td>
<td>Buried Structures</td>
<td>19-8</td>
</tr>
<tr>
<td>19.8.4</td>
<td>Overhead Catenary System (OCS)</td>
<td>19-8</td>
</tr>
</tbody>
</table>
Design Criteria Manual

Table of Contents

19.9 **CORROSION CONTROL FOR BURIED STRUCTURES** ... 19-8

19.9.1 General .. 19-8
19.9.2 Facilities Owned by Others .. 19-11
19.9.3 Corrosion Control Components and Subsystems .. 19-12

19.10 **ATMOSPHERIC CORROSION CONTROL** ... 19-13

19.10.1 General ... 19-13
19.10.2 Traction Power Substations ... 19-13
19.10.3 Electrical Equipment & Enclosures ... 19-14
19.10.4 Overhead Contact System Support Structures ... 19-14

20.0 **PUBLIC ART** ... 20-1

20.1 **INTRODUCTION** ... 20-1

20.2 **CODES AND STANDARDS** .. 20-1

20.2.1 Permitting Process .. 20-1
20.2.2 Engineering Requirements ... 20-1

20.3 **ARTWORK GUIDELINES** ... 20-2

20.3.1 Vertical and Horizontal Clearances ... 20-2
20.3.2 Protruding Objects .. 20-2
20.3.3 Safety and Security ... 20-2
20.3.4 Grounding .. 20-3
20.3.5 Architectural or Structural Connections ... 20-3

20.4 **ART ELEMENTS** .. 20-3

20.4.1 Artwork as Functional or Station/LRT Site Elements .. 20-3
20.4.2 Art Lighting ... 20-3
20.4.3 Water Features .. 20-3
20.4.4 Landscaping Elements .. 20-3
20.4.5 Art Signage ... 20-4

20.5 **ART MATERIALS** .. 20-4

20.5.1 Safety ... 20-4
20.5.2 Ease of Maintenance ... 20-5

20.6 **LIST OF POTENTIAL FINISH MATERIALS** .. 20-5

20.6.1 Platform Art Paving Unit Materials ... 20-6

21.0 **SYSTEM INTEGRATION** .. 21-1

21.1 **INTRODUCTION** ... 21-1

21.1.1 Facilities/Systems Integration ... 21-1
21.1.2 Trackwork/Systems Integration .. 21-1
21.1.3 Systems/Systems Integration ... 21-1
21.1.4 Facilities/Facilities Integration ... 21-1
21.2 SYSTEMS INTEGRATION PLAN ... 21-1
 21.2.1 System Integration Management Tool ... 21-2
 21.2.2 Interface Matrix .. 21-2
 21.2.3 Interface Control Procedures (ICPs) ... 21-2
 21.2.4 Interface Database .. 21-2
 21.2.5 Report Production ... 21-3
 21.2.6 Interface Data Sheet (IDS) ... 21-3
 21.2.7 Contractors .. 21-3

List of Appendices

APPENDIX A REQUEST FOR REVISION/DEVIATION TO THE DESIGN CRITERIA MANUAL

APPENDIX B VALLEY METRO - DRY UTILITY RELOCATION PERMIT REVIEW AND CLEARANCE FORM
List of Tables

Table 4-1: Turnout Operating Speeds ... 4-12
Table 4-2: Application of Turnouts Turnout – Ballast/direct fixation 4-12
Table 8-1: NJT Hudson-Bergen 70% Low Floor LRV – Kinkisharyo 8-9
Table 8-2: Hiawatha Minneapolis-St. Paul 70% Low Floor LRV - Bombardier 8-10
Table 8-3: S70 93 foot 70% Low Floor LRV - Siemens 8-11
Table 8-4: Vehicle Outswing Values – Ballasted Track .. 8-12
Table 8-5: Vehicle Inswing Values – Ballasted Track ... 8-13
Table 8-6: Vehicle Outswing Values – Non-ballasted Track 8-14
Table 8-7: Vehicle Inswing Values – Non-ballasted Track 8-15
Table 8-8: Vehicle Weights for Design Purposes .. 8-16
Table 8-9: Reliability Requirements ... 8-17
Table 8-10: Weighted Average of MTTR Values ... 8-24
Table 15-1: Equipment Demands ... 15-7
Table 15-2: Control Room, Recommended Percent Reflective Values Recommended Percent Reflectance Values ... 15-18
Table 15-3: General Areas, Design Percent Reflective Values Design Percent Reflectance Values (See Subsection 15.7.2F For Application) 15-19
Table 15-4: Normal Lighting Levels, Target Illuminance Values (Average, Maintained In A Horizontal Plane Unless Otherwise Noted) 15-19
Table 15-5: Normal Lighting Levels, Target Brightness Ratios 15-21
Table 15-6: Emergency Lighting Levels, Target Illuminance Values 15-21

List of Figures

Figure 2-1: Horizontal Curve and Spiral Nomenclature 2-17
Figure 2-2: Superelevation Transitions for Reverse Curves 2-18
Figure 2-3: Standard Vertical Curves ... 2-19
Figure 2-4: Double-Articulated Light Rail Vehicle Plan Geometry on Curves 2-20
Figure 2-5: Additional Width for Chorded Construction 25' Chord Length 2-21
Figure 2-6: Additional Width for Chorded Construction 50’ Chord Length 2-22
Figure 2-7: Light Rail Clearance Diagram ... 2-23
Figure 2-8: Typical Retained Cut ... 2-24
Figure 2-9: Typical Retained Fill ... 2-25
Figure 3-1: Civil Survey Details .. 3-23
Figure 3-2: Civil Survey Details .. 3-24
Figure 3-3: LRT Instreet Tracks – No Utility Zone for Underground Utilities 3-25
Figure 3-4: Typical Utility Locations Open Ballasted Track Section 3-26
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5</td>
<td>Utility Zone</td>
<td>3-27</td>
</tr>
<tr>
<td>3-6</td>
<td>COP Utility Zone for Watersewer</td>
<td>3-28</td>
</tr>
<tr>
<td>3-7</td>
<td>COP Water Service Crossing Metro</td>
<td>3-29</td>
</tr>
<tr>
<td>3-8</td>
<td>COP Sanitary Sewer Service Crossing Metro</td>
<td>3-30</td>
</tr>
<tr>
<td>3-9</td>
<td>Casing Detail</td>
<td>3-31</td>
</tr>
<tr>
<td>3-10</td>
<td>SRP Criteria for Utility Crossing or Parallel to SRP Irrigation Pipe</td>
<td>3-32</td>
</tr>
<tr>
<td>3-11</td>
<td>SRP Rail Crossing Standard Detail</td>
<td>3-33</td>
</tr>
<tr>
<td>3-12</td>
<td>Typical Four Lane Roadway with Center Platform</td>
<td>3-34</td>
</tr>
<tr>
<td>3-13</td>
<td>Typical Two Lane Roadway</td>
<td>3-35</td>
</tr>
<tr>
<td>3-14</td>
<td>Typical Four Lane Roadway</td>
<td>3-36</td>
</tr>
<tr>
<td>3-15</td>
<td>Typical Two Lane Roadway Single Track</td>
<td>3-37</td>
</tr>
<tr>
<td>3-16</td>
<td>Typical In-Street Ballast Track</td>
<td>3-38</td>
</tr>
<tr>
<td>3-17</td>
<td>Typical Embedded Track</td>
<td>3-39</td>
</tr>
<tr>
<td>4-1</td>
<td>Typical Ballasted Track Section</td>
<td>4-17</td>
</tr>
<tr>
<td>4-2</td>
<td>Tangent Direct Fixation Track</td>
<td>4-18</td>
</tr>
<tr>
<td>4-3</td>
<td>Curved Superelevation Direct Fixation Track</td>
<td>4-19</td>
</tr>
<tr>
<td>4-4</td>
<td>Curved Superelevation Direct Fixation Track with Restraining Rail</td>
<td>4-20</td>
</tr>
<tr>
<td>4-5</td>
<td>Direct Fixation Rail Fastener Clearance Envelope</td>
<td>4-21</td>
</tr>
<tr>
<td>4-6</td>
<td>Point of Switch to Point of Switch</td>
<td>4-22</td>
</tr>
<tr>
<td>4-7</td>
<td>Heel of Frog to Point of Switch (Similar Hand Turnouts)</td>
<td>4-23</td>
</tr>
<tr>
<td>4-8</td>
<td>Point of Switch to Point of Switch (Opposite Hand Turnouts)</td>
<td>4-24</td>
</tr>
<tr>
<td>4-9</td>
<td>Heel of Frog to Point of Switch (Opposite Hand Turnouts)</td>
<td>4-25</td>
</tr>
<tr>
<td>5-1</td>
<td>Light Rail Vehicle Loading</td>
<td>5-13</td>
</tr>
<tr>
<td>8-1</td>
<td>Valley Metro Kinkisharyo LRV General Arrangement</td>
<td>8-25</td>
</tr>
<tr>
<td>8-2</td>
<td>Valley Metro Kinkisharyo LRV General Arrangement (continued)</td>
<td>8-26</td>
</tr>
<tr>
<td>8-3</td>
<td>Wheel Profile</td>
<td>8-27</td>
</tr>
<tr>
<td>8-4</td>
<td>Vehicle Static and Dynamic Envelope on Level, Tangent Track</td>
<td>8-28</td>
</tr>
<tr>
<td>8-5</td>
<td>Body Point Identification – Front</td>
<td>8-29</td>
</tr>
<tr>
<td>8-6</td>
<td>Body Point Identification – Length, Width, Centers</td>
<td>8-30</td>
</tr>
<tr>
<td>8-7</td>
<td>ASHRAE Summer and Winter Comfort Zones</td>
<td>8-31</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Ampere or Algebraic difference in grades on a vertical curve</td>
<td></td>
</tr>
<tr>
<td>A/E</td>
<td>Architect Engineer</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Auto Tension</td>
<td></td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Asphalt Concrete, Alternating Current</td>
<td></td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
<td></td>
</tr>
<tr>
<td>ADA</td>
<td>Americans with Disability Act</td>
<td></td>
</tr>
<tr>
<td>ADT</td>
<td>Average Daily Traffic</td>
<td></td>
</tr>
<tr>
<td>ADOT</td>
<td>Arizona Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>AHHCW</td>
<td>Automatic Highway Crossing Warning</td>
<td></td>
</tr>
<tr>
<td>AHJ</td>
<td>Authority Having Jurisdiction</td>
<td></td>
</tr>
<tr>
<td>AIA</td>
<td>American Institute of Architects</td>
<td></td>
</tr>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
<td></td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
<td></td>
</tr>
<tr>
<td>APS</td>
<td>Arizona Public Service</td>
<td></td>
</tr>
<tr>
<td>APTA</td>
<td>American Public Transportation Association</td>
<td></td>
</tr>
<tr>
<td>AREA</td>
<td>American Railway Engineering Association</td>
<td></td>
</tr>
<tr>
<td>AREMA</td>
<td>American Railway Engineering and Maintenance-of-Way Association</td>
<td></td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
<td></td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
<td></td>
</tr>
<tr>
<td>AT&T</td>
<td>American Telephone and Telegraph Company</td>
<td></td>
</tr>
<tr>
<td>ATC</td>
<td>Automatic Train Control</td>
<td></td>
</tr>
<tr>
<td>ATC&C</td>
<td>Automatic Train Control and Communication</td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td>Automatic Teller Machine</td>
<td></td>
</tr>
<tr>
<td>ATMS</td>
<td>Advanced Transportation Management Systems</td>
<td></td>
</tr>
<tr>
<td>AW0</td>
<td>Assigned Weight Empty (Empty Weight)</td>
<td></td>
</tr>
<tr>
<td>AW1</td>
<td>Assigned Weight Seated load including operator (Seated Weight)</td>
<td></td>
</tr>
<tr>
<td>AW2</td>
<td>Assigned Weight 4 person per square meter</td>
<td></td>
</tr>
<tr>
<td>AW3</td>
<td>Assigned Weight 6 person per square meter</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>AW4</td>
<td>Assigned Weight 8 person per square meter</td>
<td></td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
<td></td>
</tr>
<tr>
<td>AWS</td>
<td>American Welding Society</td>
<td></td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius (Centigrade)</td>
<td></td>
</tr>
<tr>
<td>CADD</td>
<td>Computer Aided Design and Drafting</td>
<td></td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
<td></td>
</tr>
<tr>
<td>CBM</td>
<td>Certified Ballast Manufacturers</td>
<td></td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Clearance Envelope or Civil Engineer</td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
<td></td>
</tr>
<tr>
<td>CMT</td>
<td>Construction Maintenance Tolerance</td>
<td></td>
</tr>
<tr>
<td>CP/EV LRT</td>
<td>Central Phoenix/East Valley Light Rail Transit</td>
<td></td>
</tr>
<tr>
<td>CPTED</td>
<td>Crime Prevention through Environmental Design</td>
<td></td>
</tr>
<tr>
<td>Crest</td>
<td>Highest point on a vertical curve with a positive grade into and negative grade out of a curve</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>Station Capacity</td>
<td></td>
</tr>
<tr>
<td>CTS</td>
<td>Cable Transmission System</td>
<td></td>
</tr>
<tr>
<td>CW</td>
<td>Chorded Wall, Contact Wire</td>
<td></td>
</tr>
<tr>
<td>CWH</td>
<td>Contact Wire Height</td>
<td></td>
</tr>
<tr>
<td>CWR</td>
<td>Continuous Welded Rail</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Minimum Allowable Track Centers</td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>Direct Fixation</td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>Dead Load</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Superelevation</td>
<td></td>
</tr>
<tr>
<td>Ea</td>
<td>Actual Superelevation</td>
<td></td>
</tr>
<tr>
<td>ECU</td>
<td>Electronic Control Unit</td>
<td></td>
</tr>
<tr>
<td>E_eq</td>
<td>Equilibrium Superelevation</td>
<td></td>
</tr>
<tr>
<td>Eu</td>
<td>Unbalanced Superelevation</td>
<td></td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
<td></td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
<td></td>
</tr>
<tr>
<td>EMC</td>
<td>Electro Magnetic Compatibility</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>EMI</td>
<td>Electro Magnetic Interference</td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>Energy Management Panel</td>
<td></td>
</tr>
<tr>
<td>EPR</td>
<td>Ethylene Propylene Rubber</td>
<td></td>
</tr>
<tr>
<td>Eq</td>
<td>Total Superelevation</td>
<td></td>
</tr>
<tr>
<td>ETELS</td>
<td>Emergency Telephones</td>
<td></td>
</tr>
<tr>
<td>°F</td>
<td>Degrees Fahrenheit</td>
<td></td>
</tr>
<tr>
<td>F-C</td>
<td>Foot-Candle</td>
<td></td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
<td></td>
</tr>
<tr>
<td>FD&SM</td>
<td>Fire Detection and Suppression Monitoring</td>
<td></td>
</tr>
<tr>
<td>FM</td>
<td>Factory Mutual</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td>Federal Railroad Administration</td>
<td></td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
<td></td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gravity</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>Grade approaching a vertical curve</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>Grade departing a vertical curve</td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td>Horse Power</td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>Heavy Repairs</td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilation, and Air Conditioning</td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
<td></td>
</tr>
<tr>
<td>ICBO</td>
<td>International Conference of Building Officials</td>
<td></td>
</tr>
<tr>
<td>ICEA</td>
<td>Insulated Cable Engineers Associations</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Derailment Impact</td>
<td></td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
<td></td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
<td></td>
</tr>
<tr>
<td>IES</td>
<td>Illumination Engineering Society</td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>Inch</td>
<td></td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
<td></td>
</tr>
<tr>
<td>IOS</td>
<td>Initial Operating Segment</td>
<td></td>
</tr>
<tr>
<td>ITE</td>
<td>Institute of Transportation Engineers</td>
<td></td>
</tr>
<tr>
<td>kcmil</td>
<td>Thousand Circular Mils</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolts</td>
<td></td>
</tr>
<tr>
<td>kVA</td>
<td>Kilovolt-Amperes</td>
<td></td>
</tr>
<tr>
<td>Lcomfort</td>
<td>Passenger Comfort Load</td>
<td></td>
</tr>
<tr>
<td>Lcrush</td>
<td>Passenger Crush Load</td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
<td></td>
</tr>
<tr>
<td>LOMR</td>
<td>Letter of Map Revision</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>Level of Service</td>
<td></td>
</tr>
<tr>
<td>LPSCAT</td>
<td>Low Profile Simple Catenary Auto Tension</td>
<td></td>
</tr>
<tr>
<td>LPSCFT</td>
<td>Low Profile Simple Catenary Fixed Termination</td>
<td></td>
</tr>
<tr>
<td>Ls</td>
<td>Length of Spiral</td>
<td></td>
</tr>
<tr>
<td>LRT</td>
<td>Light Rail Transit</td>
<td></td>
</tr>
<tr>
<td>LRV</td>
<td>Light Rail Vehicle</td>
<td></td>
</tr>
<tr>
<td>Lvc</td>
<td>Length of vertical curve</td>
<td></td>
</tr>
<tr>
<td>MAG</td>
<td>Maricopa Association of Governments</td>
<td></td>
</tr>
<tr>
<td>MAS</td>
<td>Maximum Authorized Speed</td>
<td></td>
</tr>
<tr>
<td>MOE</td>
<td>Maintenance of Equipment Shop</td>
<td></td>
</tr>
<tr>
<td>MIL</td>
<td>Military</td>
<td></td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>MOE</td>
<td>Maintenance of Equipment</td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td>Minimum Operable Segment</td>
<td></td>
</tr>
<tr>
<td>MOW</td>
<td>Maintenance of Way</td>
<td></td>
</tr>
<tr>
<td>MSE</td>
<td>Mechanically Stabilized Earth</td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failures</td>
<td></td>
</tr>
<tr>
<td>MTP</td>
<td>Magnetic Ticket Processor</td>
<td></td>
</tr>
<tr>
<td>MUTCD</td>
<td>Manual of Uniform Traffic Control Devices</td>
<td></td>
</tr>
<tr>
<td>mv</td>
<td>Millivolt</td>
<td></td>
</tr>
<tr>
<td>MVA</td>
<td>Mega Volt Amperes</td>
<td></td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
<td></td>
</tr>
<tr>
<td>NAD</td>
<td>North American Datum</td>
<td></td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Standards</td>
<td></td>
</tr>
<tr>
<td>NEC</td>
<td>National Electrical Code</td>
<td></td>
</tr>
<tr>
<td>NECA</td>
<td>National Electrical Contractors Association</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
<td></td>
</tr>
<tr>
<td>NESC</td>
<td>National Electrical Safety Code</td>
<td></td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
<td></td>
</tr>
<tr>
<td>NGS</td>
<td>National Geodetic Survey</td>
<td></td>
</tr>
<tr>
<td>NGVD</td>
<td>National Geodetic Vertical Datum</td>
<td></td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
<td></td>
</tr>
<tr>
<td>OCC</td>
<td>Operations Control Center</td>
<td></td>
</tr>
<tr>
<td>OCS</td>
<td>Overhead Contact System</td>
<td></td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
<td></td>
</tr>
<tr>
<td>OTM</td>
<td>Other Track Material</td>
<td></td>
</tr>
<tr>
<td>OWF</td>
<td>Other Wayside Factors</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Passenger Demand</td>
<td></td>
</tr>
<tr>
<td>P##</td>
<td>## Minute Passenger Demand</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>Public Address</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Point of Curvature</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Preliminary Engineering</td>
<td></td>
</tr>
<tr>
<td>PITO</td>
<td>Point of Intersections of Turnout</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>Project Manager or Preventive Maintenance</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td>Proof of Payment</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per Million</td>
<td></td>
</tr>
<tr>
<td>psf</td>
<td>Pounds per Square Foot</td>
<td></td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per Square Inch</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Point of Tangency</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Peak Train Passenger Demand</td>
<td></td>
</tr>
<tr>
<td>PTELS</td>
<td>Patron Assistance Telephones</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>Poly Vinyl Chloride</td>
<td></td>
</tr>
<tr>
<td>PVI</td>
<td>Point of Vertical Intersection</td>
<td></td>
</tr>
<tr>
<td>Pweekday</td>
<td>Weekday Passenger Demand</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Radius</td>
<td></td>
</tr>
<tr>
<td>Rc</td>
<td>Running Clearance</td>
<td></td>
</tr>
<tr>
<td>RPTA</td>
<td>Regional Public Transportation Authority</td>
<td></td>
</tr>
<tr>
<td>Rv</td>
<td>Minimum radius of curvature</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>R/W</td>
<td>Right-of-Way</td>
<td></td>
</tr>
<tr>
<td>Sag</td>
<td>Lowest point on vertical curve with a negative grade into and positive grade out of the curve</td>
<td></td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
<td></td>
</tr>
<tr>
<td>SCAT</td>
<td>Simple Catenary Auto Tension</td>
<td></td>
</tr>
<tr>
<td>Sps</td>
<td>Passenger Space</td>
<td></td>
</tr>
<tr>
<td>SRP</td>
<td>Salt River Project</td>
<td></td>
</tr>
<tr>
<td>SWAT</td>
<td>Single Wire Auto Tension</td>
<td></td>
</tr>
<tr>
<td>SWFT</td>
<td>Single Wire Fixed Tension</td>
<td></td>
</tr>
<tr>
<td>SYF</td>
<td>Shop Yard Facilities</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>Dynamic half width of vehicle away from curve centerline</td>
<td></td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
<td></td>
</tr>
<tr>
<td>TCRP</td>
<td>Transportation Cooperative Research Program</td>
<td></td>
</tr>
<tr>
<td>TES</td>
<td>Traction Electrification System</td>
<td></td>
</tr>
<tr>
<td>T/MWF</td>
<td>Track/Maintenance of Way Facility</td>
<td></td>
</tr>
<tr>
<td>TPSS</td>
<td>Traction Power Substations</td>
<td></td>
</tr>
<tr>
<td>Tt</td>
<td>Dynamic half width of vehicle toward curve centerline</td>
<td></td>
</tr>
<tr>
<td>TVM</td>
<td>Ticket Vending Machine</td>
<td></td>
</tr>
<tr>
<td>TWC</td>
<td>Train to Wayside Communications</td>
<td></td>
</tr>
<tr>
<td>UBC</td>
<td>Uniform Building Code</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories</td>
<td></td>
</tr>
<tr>
<td>UPRR</td>
<td>Union Pacific Railroad</td>
<td></td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply</td>
<td></td>
</tr>
<tr>
<td>USDOT</td>
<td>United States Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td>VDC</td>
<td>Volts Direct Current</td>
<td></td>
</tr>
<tr>
<td>VDE</td>
<td>Vehicle Dynamic Envelope</td>
<td></td>
</tr>
<tr>
<td>VMB</td>
<td>Variable Message Board</td>
<td></td>
</tr>
<tr>
<td>Vo</td>
<td>Operating Speed</td>
<td></td>
</tr>
</tbody>
</table>
1.0 GENERAL

1.1 Valley Metro LRT System

The purpose of the Valley Metro LRT system is to:

- Improve the amount and reliability of transit service;
- Improve regional transit connectivity;
- Connect major activity centers via a high capacity transit system;
- Reduce vehicle miles of travel;
- Enhance the region’s economic and development potential through increased mobility;
- Help attain a quality of life consistent with local, state, and federal initiatives by enhancing transit through supportive land use, planning and design strategies;
- Provide expanded transportation choices, and
- Strengthen corridor livability through Transit Oriented Development.

1.2 Introduction

The purpose of the Design Criteria Manual is to establish the standards and design criteria for design of Valley Metro LRT projects. Its purpose is to provide sufficient information to guide the development of designs, estimates of capital, operating, and maintenance costs, and determination of the potential impacts of operations and construction on adjacent properties.

These criteria and express requirements are intended to serve as guidelines, and do not substitute for engineering judgment and sound engineering practice. Specific exceptions may apply in special cases. Project designers are responsible for identifying any necessary departure from the criteria contained in this document and bringing it to the attention of the Valley Metro Project Manager. Applications for such modifications shall be submitted in writing to the Valley Metro Project Manager. Any changes or additions to the criteria must be submitted for approval to Valley Metro prior to use in the design. The process to follow for revising or deviating from the Manual is outlined in the document entitled “REQUEST FOR DEVIATION FROM THE DESIGN CRITERIA MANUAL” located in APPENDIX A.

1.3 Definitions

ASSEMBLY is a combination of subassemblies, components, or both fitted together to form an integrated functional unit.

AGENCY is a governmental organization other than Valley Metro (i.e. city, county, etc.)

AUXILIARY TRACK is a track other than a Main Track.
BILL ESCROW is a secure, temporary storage area in a Ticket Vending Machine (TVM) for paper currency that has been validated and accepted until a transaction is completed or cancelled.

BILL VALIDATOR is a component that authenticates the validity of bills inserted for payment of fare purchases.

BILL VAULT is a locked box within a TVM in which paper currency is stacked and held upon completion of a transaction.

BLOCK is a length of track with defined limits on which movements are governed by cab signals.

BURLINGTON NORTHERN-SANTA FE (BNSF) is a Class 1 operator of freight railroad trains and facilities under the jurisdiction of the Federal Railroad Administration.

CAR: See Vehicle definition.

CASH-ONLY MODE is a mode of TVM operation in which fare purchases can only be completed using valid paper currency or coins.

CERTIFICATION is the action of determining, verifying, and attesting in writing to the qualifications of personnel and materials.

CHECKS are tests, measurements, verifications, or controls placed on an activity by means of investigations and examinations to determine satisfactory conditions, accuracy, safety, or performance.

COIN ACCEPTOR is a component that authenticates the validity of coins inserted for payment of fare purchases.

COIN CASSETTE is a recirculating coin storage unit within a TVM that receives coins from the coin acceptor and dispenses coins as change.

COIN VAULT is a locked box within a TVM in which coins that exceed the capacity of the coin cassettes are held upon completion of a transaction.

COMPONENT is a piece or part of an assembly or equipment (such as a mechanical or electrical part, valve, or support structure) that is combined with other components to form a system, subsystem, assembly, sub assembly, or part.

CONSIST is the number of vehicles/cars in a train.

CONTROLLED POINT (CP) is a place designated in the Timetable where signals are remotely controlled by the Operations Control Center.

CREDIT CARDS/DEBIT CARDS are magnetically encoded instruments issued by financial institutions to purchase items.
CROSSOVER is a pair of turnouts with the track connecting their frogs arranged to form a passage between two nearby and generally parallel tracks.

CURRENT OF TRAFFIC is the assigned direction of a main track, as specified in the Timetable.

DEFECT is the non fulfillment of an intended usage requirement or reasonable expectation.

DERAIL is a track safety device to guide rolling stock and other on-track equipment off the rails at a selected spot as a means of protection against collisions or other accidents.

DIAMOND Crossover: see DOUBLE Crossover.

DIRECTION is the assigned orientation of a train movement on an LRT line. As a matter of convention, all movements shall be assigned as either north south or east west, regardless of the actual geographic orientation of the movement.

DOUBLE CROSSOVER is a pair of crossovers physically integrated to form a universal crossover; also referred to as a DIAMOND CROSSOVER.

EMPLOYEE STATION is a place where only employees and other authorized personnel may board and alight LRVs.

EVENT is any action that results in a data record, or any hardware/software condition indication (e.g.: part failure indication, completion of an internal activity).

EXACT-CHANGE MODE is a mode of TVM operation in which the machine cannot dispense change to complete ticketing transactions (passenger must insert exact combinations of currency to complete fare purchases).

FAILURE is the malfunction of a component, assembly, or system resulting from a cause other than misuse, mishandling, or vandalism, requiring replacement to restore the intended function.

FARE is the requirement payment by a passenger for transportation on a transit network.

FARE COLLECTION AREA is a discrete cluster of fare collection equipment (e.g. TVMs) on or adjacent to a station platform. A single station may have multiple fare collection areas.

FARE COLLECTION SYSTEM is the procedures and devices used to collect fares and to accumulate and account for fares paid.

FARE-PAID AREA is a designated area within a station environment in which all passengers must be able to furnish proof of fare payment upon request.

FARE STRUCTURE is the system that determines how much fare is paid by passengers using the transit network under specified conditions.

FAULT CONDITION is the malfunction of a component, assembly, or system that is not a failure other than vandalism.
FEDERAL RAILROAD ADMINISTRATION (FRA) is a government authority under the U.S. Department of Transportation.

FIXED SIGNAL is a signal at a fixed location affecting the movement of trains (including LRT signal aspects under the control of a highway traffic signal appliance).

FLAG STOP STATION is an employee station where LRVs stop only upon signal or advance request.

FREQUENCY (f) is the number of train departures or arrivals per unit time (usually expressed in terms of the number of trains per hour).

FROG is a device used where two running rails intersect, providing flangeways to permit wheels and wheel flanges on either rail to cross the other.

GRADE CROSSING is a crossing or intersection of a railroad and a highway at the same level or grade.

HEADWAY is the time separation between successive train movements in the same direction (usually expressed in terms of minutes or seconds).

HIGH VOLUME STATION is a passenger station where weekday passenger demand represents ten percent or more of the system’s weekday passenger demand.

IN-SERVICE MODE is a mode of TVM operation in which the machine is operational and available for ticket purchases.

INTERLOCKING APPLIANCES include switches, derails, locks, control mechanisms, moveable point frogs, or movable bridges.

INTERLOCKING is an arrangement of signals and interlocking appliances interconnected so that their movements must succeed each other in a prearranged sequence and through which movements are governed by interlocking signals in conjunction with cab signals.

INTERLOCKING LIMITS are the tracks between opposing home signals for an interlocking.

INTERLOCKING SIGNALS are the fixed signals of an interlocking.

INTERSECTION SIGNALS is a fixed signal, usually associated with grade crossings in semi-exclusive right-of-way and non-exclusive right-of-way operating environments, which govern LRT movements under the control of a highway traffic signal appliance.

LIGHT RAIL TRANSIT (LRT) is a light capacity transit mode utilizing predominately semi-exclusive right-of-way and electrically propelled rail vehicles capable of multiple unit operation.

LIGHT RAIL VEHICLE (LRV) is a self-propelled unit operated in revenue passenger service on the LRT system.

LINE CAPACITY is the maximum number of passenger spaces, which transit vehicles on a line can transport past a fixed point in one direction line per unit of time. Line Capacity typically
equals either the minimum Way Capacity or the minimum Station Capacity of an LRT facility; whichever is the lesser.

LINE is the right-of-way and facilities over which LRT routes operate.

LOAD FACTOR is the ratio of passengers carried to offered passenger spaces.

MAINTAINABILITY is the ability to retain or restore an item to a specified functional state within a given time period when maintenance is performed in conformance with prescribed procedures and resources.

MAIN TRACK is a track designated by Timetable upon which train movements are authorized by timetable, cab, or interlocking signals.

MAXIMUM AUTHORIZED SPEED is the highest speed at which LRVs are permitted to operate, subject to safety, civil, operating environment, and other operational considerations that may warrant a further reduction in speed (e.g.: grade crossings, curves, signal, and interlockings).

NONCONFORMANCE is any part, procedure, specification, or drawing that does not conform to contractual or specified requirements.

NORMAL SPEED is the maximum authorized speed.

OPERATING ENVIRONMENT refers to the right-of-way category applied to a particular main track.

OPERATING SPEED is the speed of travel on the line which passengers experience.

OPERATIONS CONTROL CENTER (OCC) is a place controlling all train movements and operational functions on the LRT system and the primary personnel reporting and administrative center for the LRT system.

OUT-OF-SERVICE MODE is a mode of TVM operation in which the machine is not operational and available for ticket purchases due to error or failure rendering the machine inoperable.

PASSENGER DEMAND is the number of passenger trips forecasted to use the LRT service or the transit network per unit time based on patronage forecasts.

PASSENGER is a member of the public patronizing transit service.

PASSENGER LOADING STANDARD, COMFORT LOAD is the number of passenger spaces within an LRV represented by the sum of the seats plus the effective standee passenger spaces remaining, calculated at three (3) passengers per square meter [0.28 passengers per square foot]. This is the basic loading standard for LRT operations acceptable under most circumstances (approximately 156 passengers per LRV, depending on the design of the car).

PASSENGER LOADING STANDARD, CRUSH LOAD is the number of passenger spaces within an LRV represented by the sum of the seats plus the effective standee passenger spaces remaining, calculated at six (6) passengers per square meter [0.56 passengers per square foot].
This is a loading standard unacceptable for LRT operations under normal circumstances (approximately 238 passengers per LRV, depending on the design of the car).

PASSENGER LOADING STANDARD, DESIGN LOAD is the number of passenger spaces within an LRV represented by the sum of the seats plus the effective standee passenger spaces remaining, calculated at four (4) passengers per square meter [0.37 passengers per square foot]. This is a loading standard for LRT operations acceptable for limited durations following special events for periods not anticipated to exceed ten minutes (approximately 186 passengers per LRV, depending on the design of the car).

PASSENGER SPACE is the area occupied by a passenger. STATION is a place where passengers may board and alight LRVs. The term is inclusive of the passenger platforms, walkways, and surrounding environment.

PLATFORM is the actual area within a passenger station used for boarding and alighting passengers.

PLATFORM, CENTER, is a platform located between two operating tracks where both edges are used for passenger boarding and alighting.

PLATFORM, SIDE, is a platform where only one edge is used for passenger boarding and alighting.

POCKET TRACK is a track adjacent to a main track used for meeting or passing of trains.

PROOF-OF-PAYMENT (POP) is a barrier-free method of fare collection relying upon passengers furnishing a proof of fare payment (e.g., validated ticket, prepaid pass, valid transfer) upon request while on-board transit vehicles or within designated fare-paid zones of stations. Compliance is monitored through random checking by designated transit employees or police.

PULL-THROUGH TERMINAL is a terminal so configured that trains reversing direction must do so by changing control cabs at a tail track situated beyond the passenger platform.

RAIL is a rolled steel shape designed to be laid end-to-end in parallel lines as part of a track.

RAILROAD is a means or conveyance of passengers and goods by way of wheeled vehicles running on a track or a set of tracks.

RELIABILITY is the ability of an item to perform a required function under stated conditions.

RIGHT-OF-WAY, EXCLUSIVE is an operating environment in which transit vehicle operations are conducted independent of adjacent vehicular traffic movements except at controlled grade crossings where priority is generally yielded to transit vehicle movements. Exclusive rights-of-way may be at grade, elevated, or below grade. Access into the operating environment by other vehicles or people is prohibited except at defined, controlled grade crossings. Maximum authorized speeds are limited by LRV performance capabilities and site-specific civil or operating conditions that may warrant a further reduction in speed (e.g.: grade crossings, curves, signals, and interlockings).
RIGHT-OF-WAY, SEMI-EXCLUSIVE is an at-grade operating environment in which transit vehicle operations are influenced by adjacent vehicular and pedestrian traffic. Semi-exclusive rights-of-way are typically separated from other traffic by physical barriers such as non-mountable curbing or fencing. Access into the operating environment by other vehicles or people is prohibited except at defined, controlled grade crossings. Although maximum authorized speeds for semi-exclusive right-of-way are technically the same as exclusive right-of-way, the applied influences of adjacent vehicular and pedestrian traffic generally result in a significant reduction in overall speeds.

RIGHT-OF-WAY, NON-EXCLUSIVE is an at-grade operating environment in which transit vehicle operations are fully integrated with adjacent vehicular and/or pedestrian traffic. Transit vehicles may be afforded preferential surface treatments (such as reserved travel lanes separated by lines, mountable curbs, or special signals) or occupy travel lanes mixed with other traffic. The maximum authorized speed for transit vehicle movements in a non-exclusive right-of-way operating environment shall not exceed the speed limit of the street that the alignment occupies, subject to civil limitations.

CITY RIGHT-OF-WAY (ROW) is the strip of land on which the transit vehicles operate.

ROUTE is a consistent path and set of endpoints traversed by a transit vehicle in revenue service as described for the convenience of the traveling public.

SCHEDULE is that part of the Timetable which prescribes direction, number, frequency and times for movement of all scheduled trains.

SCHEDULED TRAIN is a train designated by the Timetable schedule.

SHOP is a facility for maintenance and repair activities.

SIGNAL ASPECT is the appearance of a fixed signal conveying an indication as viewed from the direction of an approaching train conveying an indication as viewed by the train operator in the control compartment.

SIGNAL INDICATION is the information conveyed by the aspect of a signal.

STATION CAPACITY is the maximum number of passenger spaces, which transit vehicles can transport to or from a particular passenger station in one direction line per unit of time.

STREET CONDITION BANK NOTES are paper currency found in everyday use, excluding approximately five (5) percent of which are not torn, creased, crumpled, folded, or worn.

STRINGLINE (a.k.a.: time-distance diagram) refers to a graphical representation of train movements and operating schedules with time plotted along the horizontal axis and distance plotted along the vertical axis.

STUB TERMINAL is a terminal so configured that trains reversing direction must do so by changing control cabs at the passenger platform.

SUSTAINABILITY is the ability to support natural laws and human values through actions that maintain a quality environment.
SWITCH is a pair of moveable rails with their fastenings and operating rods, providing a connection over which to divert the movement of rolling stock and other on-track equipment.

TAIL TRACK is an auxiliary track usually associated with a pull-through terminal primarily provided to allow trains to change direction without occupying tracks in active revenue service.

TERMINAL is a passenger station located at the end of a route.

TICKET is a printed fare instrument that is used to verify payment of transportation aboard transit vehicles.

TICKET VENDING MACHINE (TVM) is a secure, passenger-operated, station-based, and computer controlled assembly that prints and issues tickets, accounts for ticket sales, and temporarily stores monies inserted by passengers.

TIE is a transverse support to which rails are fastened to keep them in line, gauge, and grade, usually fabricated out of wood or concrete.

TIMETABLE is a printed, controlled document, which defines the Operating Schedule and Special Instructions that govern the movement of trains.

TRACK is the rail, ties, rail fastenings, hardware and roadbed between points four feet outside of a parallel pair of rails so configured as to support and allow the movement of rolling stock and other on-track equipment.

TRAIN is a set of one or more System vehicles coupled together and operated as a single unit. For this project, all trains shall be 1) configured with the same types of vehicles, and 2) be of equal length.

TRAIN OPERATOR is the individual directly in control of a train.

TRANSFER CENTER is a passenger station at which the means of access for the majority of boarding passengers is another transit vehicle.

TRANSIT NETWORK is the collective services provided by the LRT and interrelated modes of transportation.

TRANSIT SERVICES are those aspects of the transit network seen and experienced by actual and potential passengers.

TURNOUT is a particular grouping of two tracks joined together with a frog and switch so arranged to allow for the transfer of rolling stock and on-track equipment to cross from one track to another.

UNION PACIFIC RAILROAD (UPRR) is a Class 1 operator of freight railroad trains and facilities under the jurisdiction of the Federal Railroad Administration.

Valley Metro is defined as Valley Metro Rail, Inc.
VEHICLE is the smallest passenger carrying unit that can operate individually. A vehicle can also be coupled with one or more other vehicles to form a train.

VERIFICATION is the act of reviewing, inspecting, testing, checking, auditing, or otherwise establishing and documenting whether items, processes, services, or documents conform to specified requirements.

WAY CAPACITY is the maximum number of passenger spaces which transit vehicles on a line can transport past a particular point in one direction line per unit of time without stopping.

YARD is a system of tracks used for making up trains and the storage of LRVs and other rolling stock.

1.4 Climate Conditions
The Phoenix metropolitan area is located in the Sonoran Desert. Climate conditions can be varied, however summer temperatures are hot with an average high temperature of 105° Fahrenheit (F) and a record high of 122° F recorded in 1990. The metropolitan area has mild winters with the average low of 41° F and a record low of 17° F recorded in 1950.

Like typical deserts, the Phoenix metropolitan area is arid with the exception of the monsoon (change of air flow from the south) during late June to mid-September. The monsoon flow raises dew points above 55° F. The average annual rainfall is 7.66 inches with most of it coming during the Monsoon months. Summer storms have the propensity for development of Towering Cumulus clouds with considerable thunder and lighting. In a few cases, large storms will develop microbursts with strong downward and outward winds (50 miles per hour plus), dust storms and heavy down pours.

1.5 System Technology Description
The rail transit technology planned for the Valley Metro LRT project is characterized as a LRT system. The system will use articulated 70 percent low-floor vehicles, typically powered by an overhead contact system, and running on a fixed guideway with steel wheels on steel rails. Trains will accommodate up to three-car consist. Trains will run on exclusive and semi-exclusive right-of-ways.

1.6 Systemwide Goals
The purpose of the Valley Metro LRT project is to provide the citizens of the region with the benefits of improved public transportation in a cost-effective, environmentally sensitive, and socially responsible manner. To this end, the following systemwide policies concerning proven hardware, design life, and service integration shall be adhered to.

1.6.1 Proven Hardware
The design of the Valley Metro LRT project shall incorporate proven subsystems hardware and design concepts. All of the major subsystems, including vehicles, track, signaling, communications, fare collection and traction power equipment, shall be procured from established manufacturers, have a documented operating history of previous and current usage,
and be available off the shelf, to the greatest extent possible. The same requirements shall apply to spare parts. Waiver of these requirements will be considered only where the alternative subsystem offers substantial technical and cost advantages, is in an advanced state of development, and has accumulated substantial test data under near-revenue conditions and as approved by Valley Metro.

1.6.2 Design Life

The transit system's fixed facilities (structures, buildings, track system, traction power, and overhead catenary system) shall be designed for continued operation over a minimum period of 50 years before complete refurbishment and renovations are necessary due to wear and tear and obsolescence. It is understood that various system components will be replaced during the period as part of the maintenance program. The 50-year service life shall be used unless stated otherwise for particular pieces of equipment or systems in other chapters.

Major fixed system equipment (substation gear, shop machinery, etc.) and light rail vehicles (LRVs) shall be designed for continued operation over a minimum period of 30 years before complete replacement becomes necessary, provided that approved maintenance policies are followed.

1.6.3 Service Integration

The LRT system shall be designed as an integral part of the overall regional transportation system. Specific provisions shall be made for the efficient transfer of passengers to and from private and other public transportation modes.

Transfer facilities, including park-and-ride, continue to be studied throughout the valley to provide an effective interface with the various transportation modes based on use and ridership. These transfer facilities shall include LRT to bus, personal vehicle to bus, LRT to LRT and bus to bus.

LRT Stations shall be located and finalized during the Preliminary Engineering Phase to assure the best and most convenient transfer for the traveling public.

1.6.4 Urban Design Guidelines

The Urban Design Guidelines define a set of shared values and design visions for the entire system that Valley Metro, design review boards and system designers have agreed upon with the Communities that the system serves. The Guidelines will assist Valley Metro in establishing a level of excellence in the design of all system elements and shall be used as a performance checklist by Valley Metro in the design review process.

1.6.5 Codes and Standards

Designs shall conform to the requirements of the codes (including ordinances), regulations (including general rules and safety orders), and standards listed herein.

Where the requirements stipulated in this document or any referenced sources are in conflict, the more restrictive requirement shall govern.
Unless specifically noted, the latest edition of the code, regulation and standard that is applicable at the time the design shall be used. If a new edition or amendment to a code, regulation or standard is issued before the design is completed, the design shall conform to the new requirement(s) to the extent practical or required by the governmental authority enforcing the code, regulation or standard changed.

1.6.6 Sustainability

Valley Metro is in the process of developing a sustainability policy. It is Valley Metro’s goal that all projects be environmentally friendly through use of sustainability and consideration of natural resources. One clear way of being friendly to the environment is by reducing the carbon footprint.

Planners, Designers and Contractors shall consider sustainable designs, materials and construction methods that are measurable and quantifiable.

1.7 Concurrent Non Project Activities (CNPA)

Concurrent Non Project Activities (CNPA) are created due to an agency’s special requirements. They are not required for the basic functioning of the Project and are typically enhancements beyond what is normally required for the project. Consequently, the resulting costs of CNPA’s are borne by the requesting member agencies or third party. The request must include the scope of work, budget and signed by an authorized official. CNPA activities must be identified and authorized prior to design, as possible. Valley Metro requires the Designers to complete a CNPA review during the 30 percent design submittal. Identification of a CNPA will be achieved by completing the CNPA Request Authorization Form. These forms are available from Valley Metro.

An example of a typical CNPA is illustrated below.

Sewerline / Waterline Clearance:

Section 3.3.2 of the DCM defines the standard clearance of utility lines from the LRT guideway to be 10 feet. However, the City of Phoenix (COP) requires that the separation distance between a sewerline / waterline and the LRT guideway to be 16 feet. This is typically called the “16 feet rule” by COP.

Therefore, an eligible CNPA for the COP would be the “16 feet rule” for sewer lines and waterlines.

1.8 Computer Aided Design and Drafting Standards

The development of all Computer Aided Design and Drafting (CADD) design and construction plans, including supporting design data, shall adhere to the requirements of Valley Metro’s CADD Standards Manual, current version.
1.9 Primavera Contract Management System

If the design team is co-located with Valley Metro and has a direct link to Valley Metro’s server, the Designer shall enter the drawing log and specifications directly into Primavera Contract Management (PCM) System. The Designer shall provide all Contract Drawings and Specifications through the Release for Construction Phase in preparation of the Conformed Documents. The Designer shall also build a Contract Data Requirements List (CDRL), which reflects all submittals specified in the Technical Specifications through the Release for Construction Phase. The Designer shall be responsible, through the Release for Construction Phase, for the following:

- Verification that the CDRL and Drawing Log match and is representative of the Contract Documents in the Conformed Plans.
- Building any reference indexes required to identify and retrieve CDRLs and Contract Drawings in the PCM data base.
- Updating the CDRL and Drawing Log with any revisions the Designer creates (e.g. re-design sketches and/or Contract Drawing and Technical Specifications updates (through RFI’s, Design Clarifications, etc.)).
- Abiding with the requirements of the Document Control Plan as it relates to review and final plans and specifications.

1.10 Deviation Requests

Any deviation from the requirements identified in this Design Criteria Manual shall be submitted to Valley Metro for approval. These Deviation forms must be included as part of the Designers regularly scheduled design submittal reports starting with the 30% submittal. The Deviation form (ENG-003 Rev 2) is included in Appendix A of this document.
2.0 TRACK ALIGNMENT AND CLEARANCE

2.1 Introduction

The purpose of this Chapter is to establish the standards and design policies for the basic track alignment (vertical and horizontal) and structure clearance criteria to be used in the design of the Valley Metro LRT project.

It includes criteria for the design of LRT system alignments and establishes the minimum dimensions required to insure proper clearances between the track and wayside structures. For specific Vehicle Clearance Envelope and charts, refer to Chapter 8, Vehicle.

The LRT design must allow for the safe travel through restrictive alignments typical of urban central business districts, including rights-of-way shared with automotive traffic. LRVs are also typically designed to travel at relatively high operating speeds in suburban and rural settings.

In this chapter, terms like Desirable, Minimum, and Absolute Minimum are used to denote Valley Metro’s order of preference for track alignment selections.

- Desirable shall be considered Valley Metro’s preferred design limits.
- Minimum shall be considered Valley Metro’s design minimum when restrictions prohibit the use of Desirable. Valley Metro shall be made aware of minimum design, but no approval is required.
- Absolute Minimum shall only be used when Minimum cannot be achieved, and with the approval of Valley Metro or its representative through a design deviation form identified in Chapter 1, General.

Criteria for the use of shared right-of-way with railroads shall conform to joint Federal Railroad Administration/Federal Transit Administration (FRA/FTA) policy.

2.2 Track Alignment

The criteria set forth in this chapter for the LRT track alignments have been established to allow safe, economical, efficient and comfortable transportation for passengers while maintaining adequate factors of protection with respect to overall operation, maintenance, and vehicle stability. They have been developed by utilizing accepted engineering practices, the experiences of currently operating LRT systems and parameters of the current Valley Metro light rail transit vehicles.

It includes criteria for the design of horizontal track alignment, vertical track alignment, alignment through areas of special trackwork, and horizontal and vertical clearance requirements. Except for areas where the LRT operates within or adjacent to surface streets, the track alignment shall be designed to accommodate the maximum design speed of 65 miles per hour (mph). Physical constraints along various portions of the system, together with other design limitations, may preclude achievement of this objective. Where the LRT operates within or adjacent to surface streets, the maximum design speed for the track alignment shall be consistent with the legal speed of the parallel street traffic.
Track Extensions to the system shall have survey track stationing beginning with a station equation and increase in the direction of the extension. Stationing protocol shall remain independent of any mile posting system which may be instituted for operational purposes and which may actually run in the opposite direction from the engineering stationing.

Extension survey stationing from the initial LRT segment shall commence at the connection (end of track or point of switch, should a turnout be required) off the existing track.

When viewing any LRT alignment looking in the direction of increasing stationing, the track on the viewer's right shall be designated as the “Right Track” or Track “R” while the track to the left shall be designated the “Left Track” or Track “L”. Each route segment shall be stationed independently based on the centerline of the Right Track. Stationing shall be continuous along the length of the Right Track and this track shall be the basic control for locating all other system facilities along the route. Independent stationing shall be required for the Left Track only when tracks are not parallel or concentric, where widened track centers are required around curves, where parallel tracks have independent profiles, or where tracks are in separate track structures. Where curvature results in different stationing lengths at the end of a curve, the Left Track stationing shall be equated to the Right Track stationing at a point where both tracks become parallel. Where tracks are parallel the left track will be offset or radial from the right track on a set distance. On vertical layouts, the left track will follow the right track profile on an offset or radial basis.

Where the LRT system includes at-grade portions where LRVs will operate in mixed traffic with vehicular traffic on surface streets, the applicable geometric design criteria for such streets shall be met in the track alignment to the extent practical.

The chapter details minimum standards and design policies to govern the engineering, materials, and construction standards for trackwork and its interfaces with other elements of the Valley Metro system.

All track material, special trackwork, and practices specified herein shall govern the design of the LRT system and contain the interfacing of trackwork with other elements of the system, including but not limited to, trackway, bridges, box structures, transition slabs, signal system, drainage, etc. Except for the requirements established in these criteria and Valley Metro’s CADD Standards, all construction plans and specifications shall generally follow the TCRP Report 155, Track Design Handbook for Light Rail Transit; the AREMA Manual for Railway Engineering and Portfolio of Trackwork Plans; and the APTA Guidelines for Design of Rapid Transit Facilities, modified as necessary to reflect the physical requirements and the operating characteristics of the Valley Metro system.

2.2.1 Horizontal Alignment

The alignment of mainline horizontal tracks shall be composed of a series of tangents joined together by spiraled curves or circular curves, unless otherwise approved by Valley Metro. Spiral transitions in yards and service areas are desired, but not required when speeds are 10 miles per hour or less. However, they are required for speeds greater than 10 miles per hour.
Actual superelevation shall be used to maximize running speeds where possible. The nomenclature used to describe horizontal alignments shall be consistent with that illustrated in Figure 2-1 at the end of this Chapter.

In exclusive right-of-way or in semi-exclusive right-of-way where crossing gates are used, the design speed shall be the maximum attainable with a maximum design speed of 65 miles per hour. In semi-exclusive and non-exclusive right-of-way that operates with traffic signal control, the track alignment shall be designed to accommodate the legal posted design speed of the parallel street traffic. Maximum speed through shared intersections shall not exceed requirements of Manual of Uniform Traffic Control Devices (MUTCD) for un-gated crossings; currently 35 mph.

2.2.1.1 Mainline Track Tangent Alignment
The minimum length of tangent track between curved sections of track and track curves of reverse direction shall be as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tangent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>200 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>100 feet or 3 times the design speed in mph, which ever is greater</td>
</tr>
<tr>
<td>* Absolute Minimum</td>
<td>50 feet</td>
</tr>
<tr>
<td>(*) Not to be used without prior approval from Valley Metro</td>
<td></td>
</tr>
</tbody>
</table>

For curves oriented in the same direction, it is preferable to incorporate a single simple curve, compound curve(s) or compound spiral rather than have a short tangent between curves. If a tangent is required, the minimum tangent length requirement for the reverse curves will apply.

Stations: At Stations, the horizontal and vertical track alignments shall be tangent throughout the entire length of the station platform except where authorized by Valley Metro for certain locations where it’s been evaluated that an alternate design can comply with operating and safety requirements. The tangent shall be extended beyond both ends of the Station platform as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tangent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>75 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>60 feet</td>
</tr>
<tr>
<td>*Absolute Minimum</td>
<td>45 feet</td>
</tr>
<tr>
<td>(*) Not to be used without prior Valley Metro approval</td>
<td></td>
</tr>
</tbody>
</table>

The placement of a portion of a curved track within the Station platform limits shall have a minimum radius of 2000 feet and will require prior Valley Metro approval.

The normal length of a Station platform is 280 feet (3 car trains).
The normal platform width for a single track or wayside station platform location shall be 14 feet desirable, and 12 feet minimum. The normal width for a double track center platform station shall be 18 feet desirable and 16 feet 4 inches minimum.

Special Trackwork: The minimum length of tangent track preceding a point of switch and beyond the frog shall be as follows:

Embedded Mainline Track:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tangent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>45 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>25 feet</td>
</tr>
<tr>
<td>*Absolute Minimum</td>
<td>10 feet</td>
</tr>
</tbody>
</table>

Direct Fixation or Ballasted Mainline Track:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tangent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>45 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>25 feet</td>
</tr>
<tr>
<td>*Absolute Minimum</td>
<td>beyond the last special trackwork direct fixation fastener tie limit</td>
</tr>
</tbody>
</table>

Ballasted Yard Track:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Tangent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>45 feet (stock rail length projections + one 39' rail length)</td>
</tr>
<tr>
<td>Minimum</td>
<td>8 feet</td>
</tr>
<tr>
<td>*Absolute Minimum</td>
<td>Beyond the last long 16 foot concrete tie</td>
</tr>
<tr>
<td>(These turnouts and rails to be procured as a layout complete with concrete ties)</td>
<td></td>
</tr>
</tbody>
</table>

All Special Trackwork shall be located within the limits of the LRT exclusive right-of-way, and shall not extend into grade crossings, crosswalks, or shared right-of-way.

2.2.1.2 Mainline Track Curved Alignment

Intersections of horizontal tangents less than 10,000 foot radius shall be connected by spiraled curves.

Circular Curves: Minimum radii for in-street LRT mainline trackwork shall permit the LRVs to operate at no less than the speed limit for that street section, except when the LRT is turning from one street to another or in the immediate vicinity of a Station.

Circular curves shall be specified by their radii.
The minimum radii for mainline track curves shall be as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum Curve Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>At-grade ballasted, direct fixation</td>
<td>300 feet desirable</td>
</tr>
<tr>
<td>and bridge segment:</td>
<td></td>
</tr>
<tr>
<td>Embedded In-street:</td>
<td>100 feet desirable</td>
</tr>
<tr>
<td>(for alignment at turning intersections only)</td>
<td></td>
</tr>
<tr>
<td>*82 feet absolute minimum</td>
<td></td>
</tr>
<tr>
<td>(meets vehicle minimum criteria)</td>
<td></td>
</tr>
<tr>
<td>(Not to be used without prior Valley Metro approval)</td>
<td></td>
</tr>
</tbody>
</table>

Curve alignments that include circular curve and spirals shall be calculated by establishing the greatest spiral length using the formulas that follow. There is no minimum length for the central portion of the circular curve except the rate of twist on the vehicle based on superelevation runoff.

At reverse spiral curves with or without superelevation, the minimum tangent length shall be as specified in Mainline Track Tangent Alignment section.

Yard Track: The minimum radii for yard and service tracks shall be as follows:

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard and service tracks:</td>
<td>100 feet desirable</td>
</tr>
<tr>
<td>(Not to be used without prior Valley Metro approval)</td>
<td></td>
</tr>
</tbody>
</table>

Superelevation: Superelevation is defined as the difference in inches of the top of rail plane when the outer (high) rail is rotated (raised) above the inner (low) rail. This is called actual superelevation. Mainline track curves shall be designed with superelevation to permit desired design speeds to be achieved without resorting to an excessively longer curved radius.

Equilibrium superelevation (E_q) is reached when both wheels bear equally on the rails, where q is sufficient to bring the resultant centrifugal force to right angles to the plane of the top of rails.

Unbalanced superelevation (E_u) is the theoretical calculated value of non superelevation height. Due to varying speeds of trains on the tracks, actual superelevation is reduced by introducing no superelevation or unbalanced superelevation up to 3 inches for both safe and comfortable operation.

The design speed for a given horizontal curve shall be based on its actual radius, length of spiral transition, and actual and unbalanced superelevation through the curve as described here. The design speed criteria stated herein is based on a maximum lateral acceleration of the passenger of 0.1 g.
Equilibrium superelevation shall be determined by the following equation:

\[E_q = E_a + E_u = 3.96 \left(\frac{V^2}{R} \right) \]

Where
- \(E_q \) = total amount of superelevation required for equilibrium, in inches
- \(E_a \) = actual superelevation, in inches
- \(E_u \) = unbalanced superelevation, in inches
- \(V \) = design speed through the curve, in mph
- \(R \) = radius of track curve, in feet

In practice, the full equilibrium superelevation (\(E_q \)) is rarely installed in track, as doing so would require excessively long spiral transition curves. It could also produce passenger discomfort on board a train that is moving much slower than the design speed or stopped in the middle of a steeply superelevated curve. Therefore, only a portion of the calculated \(E_q \), the actual superelevation \(E_a \), shall be designed into the curve. The difference between the equilibrium superelevation and the actual superelevation is called the unbalance, and is designated as \(E_u \).

The desired relationship between \(E_a \) and \(E_u \) shall be defined by the following equation:

\[E_u - \left(\frac{E_a}{2} \right) = 1 \]

Desirable values of actual superelevation (\(E_a \)) shall be determined by the following formula:

\[E_a = 2.64 \left(\frac{V^2}{R} \right) - 0.66 \]

Use of the above equation shall result in the gradual introduction of both actual and unbalanced superelevation and avoid unnecessary lateral acceleration of LRVs and their passengers.

The calculated values for actual superelevation shall be rounded to the nearest 1/4-inch. For a total superelevation (\(E_a + E_u \)) of 1 inch or less, no actual superelevation (\(E_a \)) shall be applied. In specific cases where physical constraints limit the amount of \(E_a \), which can be introduced, a maximum of 1-1/2 inch of \(E_u \) shall be permitted without introduction of \(E_a \).

Actual superelevation (\(E_a \)) shall be attained and removed linearly throughout the full length of the spiral transition curve by rotating the top of rail plane (raising the outside rail) while maintaining the inside rail at the profile grade.
The desirable and maximum values for actual and unbalanced superelevation shall be as follows:

<table>
<thead>
<tr>
<th>Superelevation Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_a) = 4 inches desirable * 5 inches maximum</td>
</tr>
<tr>
<td>(E_u) = 2 inches desirable * 3 inches maximum</td>
</tr>
</tbody>
</table>

(* Not to be exceeded without prior Valley Metro approval)

Yard and secondary tracks shall be marginally superelevated to compensate for track settlement. In-street trackage shall be superelevated where practical. Superelevation shall be avoided through road crossings and to the greatest extent possible through street intersections.

Spiral Transition Curves: Spiral transition curves shall be used in order to limit lateral acceleration during the horizontal transition of the LRV as it enters the curve and to develop the superelevation of the track. Spiral transition curves shall be clothoid spirals as depicted in Figure 2-1 and as defined by Hickerson\(^{(1)}\). Spirals shall be required on all mainline track horizontal curves with a radius less than 10,000 feet.

The desirable lengths of spiral shall be the greater of the lengths determined from the following formula (rounded up to the nearest 10 feet), but preferably not less than 60 feet:

\[
L_s = 1.10E_aV \\
L_s = 0.82E_uV \\
L_s = 42E_a
\]

Where:
\(L_s\) = spiral length in feet
\(V\) = design speed through curves in mph
\(E_a\) = actual superelevation in inches
\(E_u\) = unbalanced superelevation in inches

Where geometric conditions are extremely restricted, such as in unsuperelevated, embedded track in a Central Business District (CBD) area, the spiral length may be reduced to the absolute minimum of 30 feet if prior Valley Metro approval has been obtained.

Spiral transitions are desired, but not required for yard and secondary tracks where design speeds are less than 10 mph. Yard and secondary tracks, that have design speeds greater than 10 mph, shall have spirals, and superelevation is required when at all feasible.

Under normal situations, superelevation shall be introduced and run off uniformly through the length of a spiral transition curve. In extraordinary cases where Valley Metro has granted approval for the introduction of superelevation in a curve with no spirals, the superelevation shall be developed along the tangent immediately preceding the point of curvature (PC), and

\(^{(1)}\) Thomas F. Hickerson, Route Location Design, 5th Ed (New York: McGraw Hill 1964) pp 168-171, 374-375

\(^{(2)}\) It has been determined that superelevation transition length with low floor cars having independent rotating wheels on the center truck should not be less than 1:500 or 1 inch of superelevation in 42 feet of length.
shall be run out in the tangent immediately beyond the point of tangency (PT). The transition length is then determined from the minimum spiral length formula of this subsection. The maximum amount of superelevation that may be run out in tangent track shall be 1 inch.

Compound Circular Curves: Where compound curves are used, they shall be connected by a spiral transition curve. The absolute minimum spiral length shall be the greater of the lengths as determined by the following (rounded up to the next 10 feet):

\[
L_s = 42 (E_{a2} - E_{a1})
\]
\[
L_s = 0.82 (E_{u2} - E_{u1}) V
\]
\[
L_s = 1.10 (E_{a2} - E_{a1}) V
\]

Where:
- \(L_s\) = minimum length of spiral, in feet.
- \(E_{a1}\) = actual superelevation of the first circular curve, in inches
- \(E_{a2}\) = actual superelevation of the second circular curve, in inches
- \(E_{u1}\) = unbalanced superelevation of the first circular curve, in inches
- \(E_{u2}\) = unbalanced superelevation of the second circular curve, in inches
- \(V\) = design speed through the circular curves, in mph

Spiral transition curves connecting compound curves are not required when both \((E_{a2} - E_{a1})\) and \((E_{u2} - E_{u1})\) are less than 1 inch. For compound circular curves without a spiral, the change in superelevation shall be run out entirely within the curve of the larger radius.

Reverse Curves: Where extremely restrictive horizontal geometrics make it impossible to provide sufficient tangent length between reversed superelevated curves, the curves may meet at a point of reverse spiral upon approval from Valley Metro. The point of reverse spiral shall be set so that:

\[
L_{s1} x E_{a2} = L_{s2} x E_{a1}
\]

Where
- \(E_{a1}\) = actual superelevation applied to the first curve in inches
- \(E_{a2}\) = actual superelevation of the second circular curve, in inches
- \(L_{s1}\) = the length of the spiral leaving the first curve in feet
- \(L_{s2}\) = the length of the spiral entering the second curve in feet

The superelevation transition between reversed spirals shall be accomplished by sloping both rails of the track throughout the entire transition spiral as shown in Figure 2-2. Note that through the transition, both rails will be at an elevation above the theoretical profile grade line. This method of superelevation transition creates additional design considerations including an increased ballast section width at the point of reverse spiral and possible increased clearances. Such issues shall be investigated in detail and any impacts identified in the waiver request to Valley Metro.

On embedded tracks in city streets, if alignment constraints make providing a tangent between two superelevated spiraled reversed curves impossible, a tangent shall not be required provided that the operating speed is limited so that the lateral acceleration is held to maximum of 0.1g.
Note: Any locations that may require a combination of minimum radius and maximum unbalanced superelevation are to be brought to the attention of Valley Metro.

2.2.2 Vertical Alignment

The vertical track alignment shall be composed of constant grade tangent segments connected at their intersection by parabolic curves having a constant rate of change in grade. The profile grade line in tangent track shall be along the centerline of track between the two running rails and in the plane defined by the top of the two rails. In curved track, the inside rail of the curve shall remain at the profile grade line and superelevation achieved by rotating the top of rail plane (raising the outer rail) about the inner rail. The nomenclature used to describe vertical alignments shall be consistent with that illustrated in Figure 2-3.

2.2.2.1 Vertical Tangents

The minimum length of constant profile grade between vertical curves shall be as follows:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desirable</td>
<td>200 feet</td>
</tr>
<tr>
<td>Minimum</td>
<td>100 feet or 3 times the design speed in mph, whichever is greater</td>
</tr>
<tr>
<td>*Absolute Minimum</td>
<td>40 feet</td>
</tr>
</tbody>
</table>

(*Not to be used without prior Valley Metro approval*)

In CBD areas, where the need to conform to existing street profiles makes compliance with the above criteria economically unfeasible, the above requirement may be waived with prior approval of Valley Metro. Where a tangent between vertical curves is shorter than 40 feet, consideration shall be given to reverse or compound vertical curves to avoid abrupt changes in vertical acceleration, which could result in both passenger discomfort and excessive vehicle suspension system wear and tear.

The profile at Stations shall be on a vertical tangent that extends 40 feet beyond each end of the platform.

2.2.2.2 Vertical Grades

The following profile grade limitations shall apply:

Mainline Tracks

- Maximum (sustained grade unlimited length) 4.0%
- Maximum (sustained grade with up to 1500 feet between PVIs of vertical curves) 6.0%
- Minimum (for drainage on direct fixation track) 0.2%
Station Area

Desirable (for drainage) 0.2%
Maximum 1.0%

Minimum grade is specified at Stations provided adequate track drainage can be maintained. In CBD areas, the existing street profile may govern the profile grade within the Station. In this case, the profile grade may exceed the values above, but shall be restricted to an absolute maximum of 2 percent.

Shop Tracks

Standard 0.0%

Yard Storage & Pocket Tracks

Desirable 0.5%
Maximum 0.75%

All track grades entering the yard shall either be sloped downward away from the mainline, or dished to prevent parked rail vehicles from rolling onto the mainline. For yard storage tracks, it is desirable to have a slight grade of 0.5 percent, to achieve good track drainage at the subballast level.

It is desirable that the profile grade of a stub end storage track descends toward the stub end, and, if adjacent to a mainline or secondary track, is curved away from that track at its stub end. If it is necessary for the profile grade of a storage track to slope up toward the stub end, the grade shall not exceed 0.2 percent.

2.2.2.3 Vertical Curves

All changes in grade shall be connected by vertical curves. Vertical curves shall be defined by parabolic curves having a constant rate of change in grade. The nomenclature used to describe vertical curves shall be consistent with that illustrated in Figure 2-3.

Vertical Curve Lengths

The minimum length of vertical curves shall be determined as follows:

\[L = \begin{cases} 100 (G_1 - G_2) & \text{for } V \geq 35\text{mph} \\ 50 (G_1 - G_2) & \text{for } 15 < V < 35\text{mph} \end{cases} \]

Absolute minimum length

\[\text{Crest curves} \quad \text{LVC} = \frac{AV^2}{25} \]
\[\text{Sag curves} \quad \text{LVC} = \frac{AV^2}{45} \]
Where

\[R_v = \frac{LVC}{0.01(G_2 - G_1)} \]

Both sag and crest vertical curves shall have the maximum possible length, especially if
approach and departure tangents are long. Vertical broken back curves and short horizontal
curves at sags and crest of vertical curves shall be avoided.

The minimum equivalent radius of curvature for vertical curves located on mainline tangent track
shall not be less than 820 feet for crests and 1150 feet for sags. This equivalent radius of
curvature can be calculated from the following formula:

\[R_v = \frac{LVC}{0.01(G_2 - G_1)} \]

Minimum vertical curve length and/or design speed may be governed by the overhead contact
system (OCS) due to the maximum permissible rate of separation of convergence between the
track grade and the contact wire grade. Coordination with the OCS designer shall be required to
assure compliance with this limitation.

Compound Vertical Curves: Compound and unsymmetrical vertical curves shall be permitted
provided each curve conforms to the requirements and prior Valley Metro approval has been
obtained.

Reverse Vertical Curves: Reverse vertical curves shall be permitted; provided each curve
conforms to the requirements stated in Section 2.2.2.3 and prior Valley Metro approval has
been obtained.

Combined Vertical and Horizontal Curvature: Where possible, areas of combined vertical and
horizontal curvature shall be avoided. Where areas of combined vertical and horizontal
curvature cannot be avoided, the geometrics shall not be more restrictive than 82-foot radius
horizontal curve combined with an 820-foot equivalent radius vertical crest curve.

2.3 Track Clearance Requirements

The current LRV operating on the system is outlined in Chapter 8, Vehicle. Specific vehicle
information and details are included in that section.

2.3.1 General

This section establishes the minimum dimensions required to assure proper clearances
between the LRVs and the transit structures and wayside obstructions involved. All designs
shall meet or exceed the minimum clearance criteria as specified herein. Since the provision of
adequate clearances for the safe passage of LRVs is one of the most fundamental concerns inherent in the design of the track system, it shall be rigorously monitored during both the design and construction phases.

For preliminary and final design, the following generalized lateral clearances and track center-to-center distances shall be adhered to. These dimensions apply to tangent and track curve radii less than 1,000 feet. In track curves, less than 1,000 foot radius, a more detailed clearance calculation shall be prepared. Where unusually restrictive or sensitive conditions warrant a more detailed calculation, the methodology presented in Chapter 8, Vehicles, and the following Sections shall be utilized.

Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Desirable</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard ballasted/direct fixation or embedded track, center to center spacing with center overhead contact system poles</td>
<td>14'-0"</td>
<td>13'-6"</td>
</tr>
<tr>
<td>Standard ballasted/direct fixation or embedded track, center to center spacing without center overhead contact system poles</td>
<td>13'-0"</td>
<td>12'-0"</td>
</tr>
<tr>
<td>Clearance: centerline of track to a retaining wall or fence with side maintenance and emergency evacuation path</td>
<td>10'-0"</td>
<td>9'-0"</td>
</tr>
<tr>
<td>Distance between centerline of LRT track and adjacent centerline of railroad track assuming fencing between LRT track and railroad track.</td>
<td>25'-0"</td>
<td>20'-0"</td>
</tr>
<tr>
<td>Centerline of track to outer face of curb of adjacent traffic lane</td>
<td>8'-0"</td>
<td>6'-6"</td>
</tr>
<tr>
<td>* 9'-0" unless otherwise authorized by Valley Metro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 Track Clearance Envelope (Horizontal)

The Track Clearance Envelope (TCE) is defined as the space occupied by the Vehicle Dynamic Envelope (VDE from Chapter 8, Vehicles) plus the effects of Other Wayside Factors (OWF) including construction and maintenance tolerances for track and various facilities, plus Running Clearances (RC). This relationship can be expressed as follows:

\[
\text{TCE} = \text{VDE} + \text{OWF} + \text{RC}
\]

The Track Clearance Envelope represents the space into which no physical part of the system (other than the LRV) shall be placed, constructed or protruded. The Track Clearance Envelope shall be referenced from the centerline of track at the top of rail plane.

The Track Clearance Envelope outline with Vehicle Dynamic Envelope outline is shown in Figure 2-4.
2.3.2.1 Vehicle Dynamic Envelope

The Vehicle Dynamic Envelope developed in Section 8, Vehicle, shall be used to develop the Track Clearance Envelope. The Vehicle Dynamic Envelope begins with the cross sectional outline of the static vehicle. The dynamic outline of the vehicle is then developed by making allowances for the car body movements that occur when the vehicle is operating on level, tangent track. In addition to car body movements on level, tangent track, the effects of track curvature and superelevation must also be considered to allow additional space for vehicle outswing (overhang on curve) and inswing (mid ordinate on curve) and for vehicle lean, when the track curves are superelevated.

The key vehicle characteristics used to outline the vehicle are shown in Chapter 8, Vehicle.

The Track Clearance Envelope through turnouts shall be calculated based on the centerline radius of the turnout.

2.3.2.2 Other Wayside Factors

Other Wayside Factors (OWF) is the second component of the Track Clearance Envelope. Other Wayside Factors is the sum of certain Construction and Maintenance Tolerances (CMT) plus a Chorded Wall (CW) construction factor where applicable. This relationship can be expressed as follows:

\[OWF = CMT + CW \]

The following define the Other Wayside Factors and are applicable to and shall be included in the horizontal component of the Track Clearance Envelope.

<table>
<thead>
<tr>
<th>Construction and Maintenance (Location) Tolerances (CMT)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Tolerance Along Proposed Soldier Pile and Lagging Wall</td>
<td>6 inches</td>
</tr>
<tr>
<td>Construction Tolerance Along All Other Proposed Structures</td>
<td>2 inches</td>
</tr>
<tr>
<td>Construction Tolerance at Poles or Signal Equipment</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>Track Construction and Maintenance Tolerance for Mainline, Ballasted Track</td>
<td>1.5 inches</td>
</tr>
<tr>
<td>Track Construction and Maintenance Tolerance for Embedded or Direct Fixation Track</td>
<td>0.5 inches</td>
</tr>
<tr>
<td>Track Construction and Maintenance Tolerance for Secondary and Yard Tracks</td>
<td>1 inch</td>
</tr>
<tr>
<td>Allowance for Acoustical Treatment, Where Required</td>
<td>3 inches</td>
</tr>
<tr>
<td>Chorded Wall (CW) construction factor, additional width for chorded Construction Walls to be added on the Outside of Curves Only</td>
<td>See Figures 2-5 and 2-6</td>
</tr>
</tbody>
</table>
2.3.2.3 Running Clearances
In addition to the Vehicle Dynamic Envelope and Other Wayside Factors, the Track Clearance Envelope includes an allowance for Running Clearance (RC) to provide clear passage for a LRV, which has moved to the extreme position within the Vehicle Dynamic Envelope.

The following define the minimum running clearances to be included in the horizontal component of the Track Clearance Envelope.

<table>
<thead>
<tr>
<th>Running Clearances (RC)</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Clearance at Overhead Contact System (OCS) Poles, Signals, Signs, and Other Non-Structural Members</td>
<td>2 inches</td>
</tr>
<tr>
<td>Running Clearance Along Structural Members</td>
<td>6 inches</td>
</tr>
<tr>
<td>Running Clearance for Adjacent Light Rail Vehicles</td>
<td>6 inches</td>
</tr>
</tbody>
</table>

2.3.3 Special Clearance Situations
In addition to the Track Clearance Envelope requirements described above, there are several special clearance situations warranting further definition. These special situations include the vehicle interface at station platforms; retaining walls in both cut and fill sections, through girder bridges, and maintenance and emergency evacuation paths.

All structures installed above the top of nearest rail must be set either at, or beyond, the Track Clearance Envelope outline shown in Figure 2-4.

2.3.3.1 Vehicle Interface at Station Platforms
At passenger stations, the distance from the centerline of the track to the edge of platform shall be based on the vehicle threshold, a set gap and with a tolerance of +0.00 inch and – 0.125 inch. The nominal horizontal gap shown between the platform edge and the edge of vehicle floor is in accordance with ADA Standards for Accessible Design requirements. Station clearance requirements shown in Figure 2-7.

2.3.3.2 Retaining Walls
Cut Sections: In those cases where a retaining wall along the LRT System is in a cut section, the preferred minimum clearance from the centerline of track to the near face of a retaining wall shall be a minimum of 9 feet. Where no maintenance and emergency evacuation path is required adjacent to the retaining wall, the absolute minimum clearance from the centerline of track to the near face of a retaining wall shall be no less than that required to clear the Track Clearance Envelope. See Figure 2-8 for a typical cut section.

Fill Sections: In retained fill sections, the top of a retaining wall shall be 1 foot above the elevation of the top of the adjacent rail (the rail nearest to the wall), and the preferred minimum distance from the centerline of track to the face of the wall shall be a minimum of 9 feet. Where no maintenance and emergency evacuation path is required adjacent to a curb or retaining wall without a fence or railing, the absolute minimum clearance from the centerline of track to the near face of the curb or wall shall be no less than 9' feet. See Figure 2-9 for typical fill sections.
2.3.3.3 Maintenance and Emergency Evacuation Paths
A minimum clear path width of 30 inches (48 inches desirable) shall be provided between the Track Clearance Envelope and any continuous obstruction alongside the track in a designated passenger emergency evacuation area. A minimum clear distance of 24 inches shall be provided between the Track Clearance Envelope and any continuous obstruction along a path, which is used by maintenance employees in the performance of their duties.

2.3.4 Track Clearance Envelope (Vertical)
Since the LRT system will draw electric traction power from an overhead contact wire system (OCS), the following vertical clearances from the top of the high rail along any given section of track to the soffit of any overhead structure, within the horizontal limits of the Track Clearance Envelope, shall be provided:

<table>
<thead>
<tr>
<th>Location</th>
<th>Minimum Vertical Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Overhead Bridges</td>
<td>18'-0" desirable (NESC)</td>
</tr>
<tr>
<td></td>
<td>16'-0", minimum</td>
</tr>
<tr>
<td></td>
<td>*14'-6", absolute minimum</td>
</tr>
</tbody>
</table>

* (Not to be used without prior Valley Metro approval)

The absolute minimum vertical clearance of 14'-6" is based upon a minimum pantograph operating height of 13 feet.

2.3.4.1 Transit Structures
Transit structures over public highways shall be in accordance with American Association of State Highway and Transportation Official Standard Specifications for Highway Bridges or as modified by the Arizona Department of Transportation or local jurisdiction, whichever is applicable. Vertical clearances for transit structures over local public streets and roads shall be as required by Valley Metro and the local jurisdiction.

Minimum vertical clearance for transit structures over railroad tracks shall be 23 feet 6 inches from top of rail to nearest structure point within the Clearance Envelope of the railway.

2.3.5 Track Spacing
The minimum allowable spacing between two exclusive LRT mainline tracks, with equal superelevation and no OCS support poles between them shall be determined from the following formula:

\[S = T_i + T_o + 2(OWF) + RC \]

- \(T_i \) = Dynamic half width of Track Clearance Envelope inswing towards curve center, in inches (See Figure 2-4)
- \(T_o \) = Dynamic half width of Track Clearance Envelope outswing away from curve center, in inches (See Figure 2-4)
- \(OWF \) = Other wayside factors, in inches
- \(RC \) = Running clearance, in inches
Along track sections where OCS poles are located between track centerlines, the minimum track spacing shall be determined from the following formula:

\[S = T_i + T_o + 2(OWF + RC) + P \]

Where \(P \) = maximum allowable OCS pole diameter (including deflection) of 18 inches

The minimum track spacing to be used along tangent track with center OCS support poles shall be 13 feet 6 inches.

The minimum track spacing to be used along tangent track without center OCS support poles shall be 12 feet 0 inch. (Not to be used without prior Valley Metro approval.)
Figure 2-1: Horizontal Curve and Spiral Nomenclature

NOTATIONS

CC - CENTER OF CIRCULAR CURVE
CS - POINT OF CHANGE FROM CIRCULAR CURVE TO SPIRAL
Dc - DEGREE OF CIRCULAR CURVE, ARC DEFINITION
Ea - TOTAL EXTERNAL DISTANCE OF A SPIRALIZED CURVE
k - TANGENT DISTANCE FROM TS OR ST TO PC OR PT OF THE SHIFTED CIRCULAR CURVE
Lc - TOTAL LENGTH OF CIRCULAR CURVE ARC
Lt - TOTAL LENGTH OF SPIRAL
Lm - LONG TANGENT OF SPIRAL
p - OFFSET FROM THE MAIN TANGENT TO THE PC OR PT OF THE SHIFTED CIRCULAR CURVE
pC - POINT OF CHANGE FROM TANGENT TO CIRCULAR CURVE
pT - POINT OF TANGENT FROM CIRCULAR CURVE TO TANGENT
R - RADIUS OF CIRCULAR CURVE
S - POINT OF CHANGE FROM SPIRAL TO CIRCULAR CURVE
ST - POINT OF CHANGE FROM SPIRAL TO TANGENT
S.T. - SHORT TANGENT OF SPIRAL
T - TOTAL TANGENT DISTANCE FROM TS OR ST TO PI
TS - POINT OF CHANGE FROM TANGENT TO SPIRAL
Xa - TANGENT DISTANCE FROM TS TO SC OR ST TO CS
Y - TANGENT OFFSET AT SC OR CS
y - TANGENT OFFSET AT THE CIRCULAR CURVE
z - CENTRAL ANGLE OF THE CIRCULAR CURVE
f - CENTRAL ANGLE OF SPIRAL

CURVE FORMULAS

Dc = \(\frac{5729.578}{R} \)

Tm = \(\frac{(R_p) \tan \left(\frac{\Delta}{2}
ight) \pm k}{2} \)

Ea = \(\frac{(R_p) \left(\frac{\Delta}{2} \right)}{\cos \left(\frac{\Delta}{2} \right)} \) x p

Lc = \(\frac{\Delta x L_c}{\Delta L_c} \) x 100 - \(\frac{\Delta - 2 f_s}{L_c} \) x 100

SPIRAL FORMULAS

Lm = \(\frac{2Tm}{R} \)

Ym = \(\frac{f_{16}}{3} \) x 42

k = \(\frac{L_c}{12} \) x \(\frac{f_{16}}{5} \) x \(\frac{f_{16}}{10} \) x 100

\(\frac{Ym + \Delta}{\sin f_g} \)

HORIZONTAL CURVE AND SPIRAL NOMENCLATURE
Figure 2-2: Superelevation Transitions for Reverse Curves

\[L_{s1} \times E_{a2} = L_{s2} \times E_{a1} \]
SAG VERTICAL CURVES

CREST VERTICAL CURVES

PARABOLIC VERTICAL CURVE FORMULAS

\[e = \left(\frac{G_2 - G_1}{LVC}\right) - \frac{1}{8}(LVC) \]

\[y = \frac{1}{2}\left(\frac{G_2 - G_1}{LVC}\right) x^2 - \frac{1}{2} r x^2 \]

ELEV A \(= \left(\frac{f}{2}\right) x^2 + G_1 x + \text{ELEV PVC} \)

r \(= \left(\frac{G_2 - G_1}{LVC}\right)\) - RATE OF CHANGE IN GRADE

VALLEY METRO

DESIGN CRITERIA

STANDARD VERTICAL CURVES

FIGURE NO. 2-3
VEHICLE SYMMETRICAL ABOUT C

C ARTICULATION (TYP)

C TRUCK (TYP)

C TRACK RADIUS

C TRACK

C VEHICLE

OUTLINE OF STATIC VEHICLE

OUTLINE OF DYNAMIC VEHICLE

REAR VIEW MIRROR (TYP)

NOTE:
FOR VEHICLE DIMENSIONS USED TO DEVELOP THE DYNAMIC ENVELOPE, SEE TABLE 8.1, 8.2 AND 8.3.

VALLEY METRO
Figure 2-5: Additional Width for Chorded Construction

25' Chord Length

Additional Width for Chorded Construction (inches)

Curve Radii 200' to 2500'
25' Chord Length

Valley Metro

Design Criteria
Date 05/20/13
Additional Width for Chorded Construction
25' Chord Length
Figure No. 2-5
Figure 2-6: Additional Width for Chorded Construction
50' Chord Length

Curve Radii 2500' to 30000'
50' Chord Length

Additional Width for Chorded Construction (Inches)
Figure 2-9: Typical Retained Fill

- Varies 39' NOM
- C Track
- 9'-0" MIN
- 13'-6" MIN
- W/ Center Pole
- 9'-0" MIN
- OCS Pole and FDN
- 6'-9"
- 3'-0" Railing
- 2.5' (MIN)
- 24:1
- 24:1
- 10" MIN
- R/W (OR ESMT) LINE
- Ballast
- 8" Subballast
- Underdrain (Typ)
- 8'-3" Conc Tie (Typ)
- Retaining Wall (Typ)
- 2'-MIN (Typ)
3.0 CIVIL WORK

3.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the civil engineering design to be used in the preliminary engineering and final design of the Valley Metro LRT project.

It includes criteria for the design of light rail transit system surveys, utilities, drainage, roadways, paving, and determination of the required rights-of-way and various easement types.

3.2 Survey Control

A permanent horizontal and vertical survey control system (benchmark description) shall be developed during the Final Design phase of the project. Control points shall be permanently marked, clearly described and shall be placed a maximum of 1000 LF intervals along the survey corridor. A control diagram and report shall be prepared and provided to all parties involved in the completion of the project.

The Designer and Land Surveyor shall meet with the local jurisdiction prior to beginning survey work to discuss local concerns and ties to the jurisdiction horizontal and vertical control.

Valley Metro maintains database for the existing Light Rail facilities, which is based on the design surveys performed for previous projects. The Designer and Land Surveyor shall meet with Valley Metro to coordinate existing survey information and any control survey data being performed.

3.2.1 Horizontal Control

The horizontal control for the project shall be based on control surveys provided for the Maricopa County GDACS system (Arizona Ground Coordinates, Central Zone NAD 83). All control work shall be tied back to established and recognized NGS monuments for verification of accuracy.

The accuracy of the horizontal ground control and of supporting horizontal ground control surveys shall as a minimum be Second Order, Class I, as defined by the Federal Geodetic Control Committee and published under the title Classification, Standards of Accuracy and General Specifications of Geodetic Control Stations, published by the National Geodetic Survey (NGS) in February 1974.

Existing survey monuments which lie within the LRT way shall be replaced as described and shown in Figures 3-1 and 3-2. An shall abide with local jurisdiction requirements.

3.2.2 Vertical Control

Vertical control for the project shall be based on the National Geodetic Vertical Datum (NGVD) of 1988 Valley Metro.
The accuracy of the vertical ground control and of supporting vertical ground control surveys shall be, as minimum, Second Order, Class 1, as defined in the preceding section.

3.2.3 Right-of-Way Surveys

A record of survey is required to establish and identify the existing right-of-way condition prior to any new right-of-way requirements being determined. Right-of-way surveys is the composite total requirement of all interests and uses of real property needed to construct, maintain, protect and operate the transit system. Some right-of-way survey requirements are temporary and reversionary in nature, while other requirements are permanent as dictated by operating needs. The intent is to acquire and maintain the minimum right-of-way required consistent with the requirements of the system and good right-of-way practices. Because right-of-way plans are used as a basis for acquisition of property, all interests and uses shall be shown on the right-of-way plans together with the detailed property dispositions. Such interests and uses include utility easements such as proposed and existing Private and Public Utility Easements. A physical survey is to be performed at the site and is to be provided for every parcel of land affected by a right-of-way and/or easement acquisition identifying the right-of-way and/or easement to be acquired and the remainder of the parcel. The right-of-way and/or easement to be acquired is to be marked (painted or staked) on the property in a manner that will clearly identify the right-of-way and/or easement being acquired and any improvements lying within said right-of-way and/or easement being acquired. A title report is required for all property to be acquired Valley Metro for the Project.

The taking envelope is influenced by the topography, drainage, ditches, retaining walls, service roads, utilities, and the nature of the structure and side slope selected.

3.2.4 Design Surveys

The survey must be supervised by a professional Land Surveyor registered in the state of Arizona. This section contains general survey requirements and standards. More specific survey requirements may be found under general/survey information for each local jurisdiction in which the Valley Metro LRT project is located.

Benchmarks, either permanent or temporary, shall be a maximum of 1,000 feet apart. At least two benchmarks on a project shall be existing local jurisdiction recognized benchmark monuments. The Land Surveyor shall check the location of all found benchmarks and monuments with known local jurisdiction data.

Existing monuments shall be located by the Designer and Land Surveyor, especially if they are covered by pavement or a seal coat, and their location confirmed in order to determine the available ROW for the proposed improvements.

The Designer shall check the design detail requirements for each type of project to make sure the survey contains all necessary information. The following is a list of general requirements for the survey:

- The survey shall show finished floor elevations of all structures within the ROW and 30 feet beyond unless exempted in the detail design section.
• All distances in the survey notes shall be from the face of the object being measured to the monument line.

• Show all subdivision names, block numbers, lot numbers, property splits, lot dimensions, addresses, names of major businesses, schools, fire stations, and other public facilities within the project boundaries.

• All above ground utilities and appurtenances and their distance from the monument line shall be located.

• All topography to at least 10 feet beyond the ultimate ROW shall be located.

• Detailed cross sections shall be taken at a minimum of 50-foot intervals and Designer shall consider developing a digital terrain model (DTM) for the project.

• All subdivision entrance structures such as gates, and any associated services, such as lighting and power connections shall be located.

• In the absence of record drawings, sufficient elevations shall be obtained to indicate the direction of surface flow on all intersecting streets, frontage roads, and paved parking lots. Show the direction of flow using small arrows in the plan view on every plan sheet.

• Where certain items such as monuments, water valves, etc., are supposed to be according to plan records, but cannot be found in the field, they shall be labeled “NOT FOUND” or “NF” on the plans.

• Locate all existing irrigation controllers, lines and appurtenances within all agencies ROW (e.g., COP, COT, COM, COG, ADOT, etc.).

• Each plan sheet shall refer to the nearest benchmark by name and stationing.

• All driveways and alleys shall be located and profiled. Driveways may be profiled using a smart level for ADA Standards for Accessible Design retrofit projects in which all driveways identified as over 2% slope shall be profiled.

• All water valve boxes shall be located and the elevations of the top of the operating valve nuts shall be determined. This data shall be shown in the profile section of the plans using the symbol for water valves.

• The elevations of all existing sewer and storm drain manhole rims and inverts shall be shown on the plan views or in the profiles.

3.2.5 Guideway

Guideway is defined as that portion of the light rail line, which has been prepared to support the track and its appurtenant structures (See Chapter 4, Trackwork, for other criteria.)

This section establishes criteria for the preliminary and final design of at-grade sections of the light rail system guideway and provides guidelines for determining right-of-way requirements for line sections of the system.

The guideway shall be designed in conformance with these criteria and the current standards of the American Railway Engineering and Maintenance-of-Way Association (AREMA) Manual for Railway Engineering and the appropriate standards, modified as required to reflect the physical
requirements and the operating characteristics of the light rail system. The guideway may contain longitudinal and transverse duct banks, electrical conduits, and utility structures.

3.2.6 Transition Slabs
A transition slab shall be provided at all transitions between ballasted track, and direct fixation, or embedded track.

3.3 Utilities
This criteria establishes the policies, procedures, and guidelines relating to utilities within the Valley Metro LRT project and are incorporated herein (see Figures 3-3, 3-4 and 3-5).

General Compliance with the utility design and coordination procedures contained herein is required unless otherwise agreed to by Valley Metro.

Coordination with Governmental Agencies and Utility Companies shall be the responsibility of Valley Metro.

3.3.1 Utility Location and Relocation Requirements
It is paramount for Valley Metro to maintain a safe and continuous operation of the guideway. Access for construction or maintenance purposes to the guideway shall be restricted to LRT personnel only or to others under the direction of authorized LRT personnel.

3.3.1.1 Utility Locating
The Arizona Revised Statutes (Arizona Revised Statutes, Title 40, Chapter 2, Article 6.3) require all underground facilities owners to be able to locate their facilities upon request within public streets, alleys, easements, and all other designated rights-of-way. All Valley Metro owned underground facilities shall be locatable by means of an electronic locating device. Such facilities shall include all electrical and fiber optic conduit, sewer and water service lines, main irrigation lines (2-inch diameter or greater), storm sewer laterals, and other underground Valley Metro facilities. All Valley Metro underground utility lines, including service lines, shall be accompanied by a locator wire in accordance with Valley Metro requirements.

3.3.2 Valley Metro RUA Requirements
- The Restricted Utility Area (RUA) is defined as the area where restrictions apply to existing and new utilities in the vicinity of the Valley Metro facility to protect both the utility and the guideway. Utilities not part of the LRT system are to be maintained from outside of the RUA (unless otherwise approved by Valley Metro).
- The City of Phoenix has supplemented the requirements for construction of water and sewer utilities in the vicinity of the Valley Metro facility. The City of Phoenix is responsible for payment for these additional improvements.
- The Valley Metro RUA requirements apply to all utilities in the vicinity of the track. The Valley Metro RUA is defined horizontally as follows: (See Figures 3-3, 3-4 and 3-5)
- Double Track – 10 feet left and right of the centerline of tracks; width is 33.5 feet;
• Single Track – 10 feet left and right of the centerline of track; width is 20 feet;
• Center Station Platform – 10 feet left and right of the centerline of tracks; width is 47 feet; and
• Curb Side Station Platform – 10 feet left or right of centerline of track on rail side and 20 feet from centerline of track on platform side; width is 30 feet.
• A deviation of the RUA will only be granted if a Request for Revision/Deviation Form is submitted and approved by Metro.
• The Valley Metro RUA is defined vertically as follows:
 • The top of existing utilities within the RUA shall be a minimum of 4 feet below top of rail; and
 • The top of new utilities crossing the RUA shall be a minimum of 5.5 feet below top of rail.
• A deviation of the RUA will only be granted if a Request for Revision/Deviation Form is submitted and approved by Metro.
• Utilities within the Roadway Right-of-Way shared by Valley Metro or any utility within the RUA, are restricted as follows:
 • Existing Longitudinally Oriented Underground Utilities: Utilities are not generally permitted within the RUA. However utilities will be addressed on a case-by-case basis. Subject to the approval of Valley Metro, a minimum vertical distance of 4 feet from the top of rail to top of utility (or encasement) is provided and evidence that the material, type, condition and load capacity of the utility is sufficient, the utility shall be considered to remain in place. Encasement of the existing utility may be required. In all cases, access for maintenance, inspection, new services or other purposes to the longitudinal utility by way of manholes, vaults, valve boxes, clean outs, taps, etc., shall be made from outside the guideway.
 • Longitudinally oriented underground utilities located within the RUA shall be relocated to outside the RUA, unless approved by Valley Metro to remain. Design for relocated utilities shall be in accordance with applicable Valley Metro, City and State criteria. Encroachment into the RUA will only be granted if a Request for Deviation Form is submitted and approved by Metro (see Appendix A).
 • Existing Underground Utility Crossings: Existing utilities that cross the guideway may remain if the vertical distance from the top of rail to the top of the utility (or encasement) is not less than 4 feet, material type, condition and load capacity meets LRT requirements and the distance from the centerline of a OCS support pole foundation to the face of the utility or encasement is not less than 4 feet. Access to the utility by way of manholes, etc. shall be from outside the guideway.
 • Existing underground utilities crossing the track within the RUA shall be relocated (lowered) to provide a minimum vertical distance from top of rail to top of encasement of 5.5 feet extending to the outside of the RUA. Design for relocated utilities shall be in accordance with applicable Valley Metro, City and State criteria.
• New Longitudinally Oriented Underground Utilities: New utilities that are essentially longitudinally oriented with the track alignment shall be constructed outside of the RUA.
Access to the utility shall be from outside the guideway. Design for new utilities shall be in accordance with applicable Valley Metro, City and State criteria. Encroachment into the RUA will only be granted if a Request for Revision/Deviation Form is submitted and approved by Metro (see Appendix A).

- **New Underground Utility Crossings**: New utilities that cross the guideway and are metallic or are under pressure, shall be encased in a casing pipe (sleeve) or approved encasement, provide a minimum vertical distance from top of rail to top of encasement of 5.5 feet extending to the outsides of the RUA, and be approved by Valley Metro. Utilities that are non-metallic and non-pressurized may not require casing, but shall meet the depth requirements stated above and be approved by Valley Metro. Access (i.e. manhole) shall be from outside the guideway. Design for new utilities shall be in accordance with applicable Valley Metro, City and State criteria.

- **Existing Overhead Utility Crossings**: Aerial utilities crossing the LRT guideway:
 - Electric lines less than 69 kV crossing the LRT guideway shall be converted from overhead to underground, and cross the guideway perpendicular to the extent practical.
 - Electric lines that are 69 kV or greater may remain overhead. All crossings shall be perpendicular to the guideway to the extent practical. Power poles shall be of a Class B construction and the lowest electric conductor at the lowest point of sag shall be a minimum of 40-feet above top of rail.
 - Telecommunications cable, CATV, Coaxial cable, fiber optics cable, and other similar utilities crossing the LRT guideway shall be converted from overhead to underground, and cross the guideway perpendicular to the extent practical.

- **Existing and New Longitudinally Oriented Overhead Utilities**: Electric lines less than 69 kV and telecommunication cable, CATV, Coaxial cable, fiber optics cable, and other similar utilities that extend longitudinally to the LRT guideway shall be buried. Existing facilities will need to be converted from overhead to underground.

Utilities being abandoned are to be removed or abandoned in place in accordance with the requirements set by the local jurisdiction and as approved by Valley Metro.

Additional water and sewer design requirements relative to the Valley Metro facility include:

- **Fire hydrants**: shall be added to meet City standards as required by the City and the Fire Marshall. The Fire Marshall may require fire hydrants on both sides of the track.
- **Odor control**: shall be required for all sanitary sewer tie-ins and by-pass pumping during construction as indicated in the Valley Metro specifications.
- **Facilities with critical service**: shall be identified, and methodology to maintain service during construction shall be included with the design.
- **Permits**: shall be obtained from Maricopa County Department of Environmental Services for construction of water and sewer utilities.
- **Cathodic protection**: shall be provided for all metallic piping as required by the City and utility company.
• Water and sewer services provided by Valley Metro for existing services only. No allowances made for future service connections.

• On a case-by-case basis under certain circumstances, Valley Metro may allow deviations from the RUA Requirements. The Consultant/private utility shall prepare a Request for Revision/Deviation to the Design Criteria Manual for submittal to Valley Metro for approval outlining why the deviation is required (See Appendix A). The Consultant/private utility shall not proceed with the design until approval is received from Valley Metro for the deviation.

3.3.3 City of Phoenix RUA Requirements (Water and Sewer)

The RUA criteria within the City of Phoenix are presented in the City of Phoenix Light Rail Addendum to the City of Phoenix Design Standards Manual for Water and Wastewater Systems and are summarized below (See Figure 3-6). The cost difference between the Valley Metro RUA criteria and the City of Phoenix RUA criteria is borne by the City of Phoenix. The design documents shall quantify these conditions.

3.3.4 Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designer</td>
<td>Private or Municipal Engineer</td>
</tr>
<tr>
<td>Valley Metro</td>
<td>Valley Metro Rail, Inc.</td>
</tr>
<tr>
<td>Municipal Utilities</td>
<td>Federal Government, State Agencies (e.g., ASU), County, Indian Community, and Municipal utility services, such as water, sewer, gas, electricity, chilled water, communications, irrigation and storm drainage.</td>
</tr>
<tr>
<td>Prior Rights</td>
<td>A compensable property interest (Land Rights), such as USA Land Exchange, that will justify reimbursement of utility relocation costs. Most common form of prior right is an easement/public utility easement, where such easement has been properly recorded at the Maricopa Recorders Office. Utilities being relocated and having prior rights will also have the land rights transferred to the new location.</td>
</tr>
<tr>
<td>Private Utility Companies</td>
<td>Companies such as Arizona Public Service, CenturyLink, Southwest Gas, El Paso Natural Gas, Air Products (Nitrogen lines), Salt River Project (Power, Water, and Fiber Optic), Chill Water lines, Cox Communications, various fiber optic telecommunication companies and others not previously identified.</td>
</tr>
<tr>
<td>Utility Abandonment</td>
<td>A utility segment that ceases to be active.</td>
</tr>
<tr>
<td>Utility Betterment</td>
<td>Upgrading in size, capacity or quality of a utility segment rather than replacement in kind.</td>
</tr>
<tr>
<td>Future Utilities</td>
<td>Addition of a new utility segment not previously in existence. Provision of tunnels, conduits, sleeves, pipe sections, bridge blocks-outs, etc. for future utility use.</td>
</tr>
</tbody>
</table>
Utility Relocation Required relocation of utility segment due to Light Rail construction.

Utility Segment Any portion of a utility line, pipe, box, pole, or other, as it relates to the proposed Light Rail project.

3.3.5 Utility Design Reference

Government and private utility relocations and adjustment work shall be performed in accordance with the following references:

- Arizona Utility Coordinating Committee Public Improvement Project Guide
- City of Phoenix Design Criteria for utilities within ROW (AP5.1), www.phoenix.gov/phxutper.html
- Arizona Administration Code, Title 18, Chapter 4, Water www.azsos.gov/public_services/Title_18/18-04.htm
- Arizona Administration Code, Title 18, Chapter 9, Wastewater www.azsos.gov/public_services/Title_18/18-09.htm
- City of Phoenix Design Standards Manual for Water and Wastewater Systems
- Addendum for Water and Sewer in Light Rail Corridors http://phoenix.gov/WATER/desstrl.html
3.3.6 Utility Base Maps

Valley Metro shall collect existing utility data from various Municipal Utilities and Private Utility companies. Valley Metro shall contact the County and/or municipality wherein the project is located, to assure that all recent utility installations have been accounted for and request plans for “as built” utilities, not furnished, which Valley Metro knows to exist or has reason to believe may exist, based upon Valley Metro’s review of plans furnished, permit information and findings in the field. When “as built” data is unavailable, field location shall be required. Valley Metro shall provide the utility mapping to the Designer.

The Designer shall prepare Base Maps of existing utilities based on the information provided by Valley Metro. The Designer shall request and obtain supplemental information from the Municipal Utility and Private Utility companies as required to complete the Base Maps. The Designer shall submit prints of the Base Maps to Municipal and Private Utilities for their review and verifications. Utilities will be requested to return their comments with two sets of “as built” plans for any of their facilities which have not been shown on the maps. Copies of corrected Base Maps shall be furnished to those utilities, which have requested changes or provided additional data. Existing facilities data shall be used for background information on appropriate drawing of the construction documents. A composite plan of existing utilities shall be incorporated into engineering design drawings.

3.3.7 Municipal Utilities

Municipal Utilities may request that Valley Metro provide for relocation of existing water, sewer, storm drainage, natural gas, electric, chilled water, fiber communication system, irrigation systems, and traffic signal conduits, subject to their review. The Designer shall prepare conceptual relocation plans for review by the Municipal Utility prior to preparation of draft utility plans. The conceptual plans shall be submitted to Valley Metro for coordination with the Municipal Utility.

Alternatively, some Municipal Utilities may desire to design, or design and construct, some or all abandonment’s and relocations with their own forces.

Municipal Utilities may have betterments or allowances for future needs constructed under the light rail construction contract, subject to approval by Valley Metro. Unless there is a specific agreement between Valley Metro and the Municipal Utility, additional costs associated with design and construction of betterments and allowance for future needs will be paid for by the Municipal Utility.

When Municipal Utility betterments or allowances for future needs are to be constructed by the Valley Metro contractor, the Designer shall be required to prepare plans for this work in accordance with requirements of that Municipal’s standards. Valley Metro shall be required to provide for work within the Special Provisions and in the Sequence of Construction shown on the project drawings.

The LRT project may have to relocate any government utilities that do not belong to the local jurisdiction, i.e. Arizona State University facilities, Arizona Department of Transportation, U.S. Government, etc.
3.3.8 Private Utilities

Valley Metro, in coordination with the Designer and the private utilities, shall be responsible for identification of suitable relocation alignments for private utilities existing within the Public right-of-way. The locations shall be in conformance with Light Rail Design Guidelines and Municipal Policy on accommodating utilities within the right-of-way. Deviations from Valley Metro criteria will be evaluated on a case by case basis as described in the Valley Metro RUA Requirements Section of this manual.

Private utilities typically design their own relocations, which are subject to review and approval by Valley Metro for satisfactory compliance with policies, procedures, and guidelines contained herein. Generally, private utilities do their own relocation construction, but on occasion, may request Valley Metro to have their contractor do all or part of the utility relocation work, in order to avoid construction conflicts and delays.

As part of the Utility Relocation Review permit process, private utility relocation designs shall be submitted to Valley Metro for logging. Valley Metro will then forward the relocation plans and the “Valley Metro Rail – Dry Utility Relocation Permit Review and Clearance Form” (See Appendix B) to the Designer for review, comment and concurrence prior to releasing the private utility permit for construction. The Designer shall work with Valley Metro and the private utility company to resolve conflicts or issues associated with the relocation.

Private utilities may request Valley Metro to have bridge blocks-outs or modification of other elements of the LRT project to accommodate their facility relocations. When approved by Valley Metro, the Designer shall perform the design and maintain actual extra cost records for preparation of a Consultant Change Order for Valley Metro reimbursement through a Utility Agreement.

When utility companies prepare drawings for work to be performed concurrently with project construction, Valley Metro shall provide for work within the Special Provisions and in the Sequence of Construction shown in the project drawings. Utilities shall be required to provide appropriate size reproducible drawings and/or CADD files with a sheet number block located in the upper right corner of each drawing for the Utility consultant to number sheets within the project construction drawings. The drawings shall be suitable for reduction to half size.

The Designer shall maintain the latest approved private utility plans, including the corresponding CADD Files. If there are changes to the LRT design that may affect the utility relocation, a copy of the revised plans must be forward to Metro and all potential private utility companies.

Once private utility companies receive approval from Valley Metro, they will submit their plans to the appropriate municipal agency for approval and permit for work being completed in the public right-of-way. City of Phoenix submittals will be in accordance with City of Phoenix Administrative Procedure 5.1. Therefore, it is prudent to be sure that there will be no further LRT design changes that may affect the private utility relocation plans.

Private utility companies shall have their plans submitted for review and approved by Valley Metro and the Designer. The private utility companies shall indicate locations of facilities with horizontal and vertical datum on the project construction drawings.
Copies of the final approved private utility relocation drawings will be provided to the Designer so that they may be properly reflected in the project plans.

3.3.9 Utility Service Requests

Valley Metro is required to prepare power service requests for all electrical facilities including traffic signals, electrified signs, street lighting, irrigation controllers, bus shelters, signal buildings, TPSS, Park and Ride facilities, station platforms, and transit centers. If locations of power service availability are needed, the Designer shall coordinate with Valley Metro who will request the information from the appropriate power utility.

3.3.10 Salt River Project (SRP) Water License Requirements

SRP has specific design requirements for crossings or lines running parallel to SRP irrigation pipe (see Figures 3-10 and 3-11). A license is required from SRP prior to performing any work or to construct improvements or other facilities within an SRP irrigation facility right-of-way.

3.3.11 Utility Coordination Meetings

Valley Metro, utility owners, the Designer, or other Agencies may request a meeting to address schedules, design status, costs, prior rights issues, joint trench strategies, and other information, and to resolve potential conflicts with the LRT project design.

3.4 Drainage

The goal in the design of the system drainage is to protect the rail system line and facilities from all weather conditions (i.e. storm-runoff damage, etc.), and to protect Valley Metro from liability for damage to property from resulting storm-runoff either passing through or caused by Light Rail construction, while maintaining consistency with the requirements of the Clean Water Act.

Design of drainage facilities located within the jurisdiction of other agencies requiring relocation or modifications because of LRT construction shall conform to the latest design criteria standards (i.e. design criteria manual) of Valley Metro and the various municipalities as referenced below:

- City of Glendale – Engineering Design and Construction Standards
- City of Mesa – Engineering Procedure Manual, Engineering and Design Standards
- City of Phoenix – Storm Water Policies and Standards,
 http://phoenix.gov/STREETS/index.html
- City of Tempe – Engineering Design Criteria,
 http://www.tempe.gov/engineering/design_criteria.htm

The Designer shall be responsible to adhere to the latest revisions set forth by the local jurisdiction and understands that it is his responsibility to make himself aware of the local

3 The Engineer shall be responsible for adherence to the latest revisions set forth by the local jurisdiction and understands that it is the Engineer’s responsibility to make themselves aware of the local jurisdiction guidelines.
jurisdiction guidelines. Coordinate the drainage study and outfalls with the local jurisdiction and their drainage master plans.

Drainage design shall be in accordance with the standards, practices, and methodology of Valley Metro and the local jurisdiction each project or section of a project falls within. In a case where the local jurisdiction has no codes or standards, the Flood Control District of Maricopa County standards and drainage methodology shall be followed. The drainage design criteria provided in this section shall be considered a minimum standard. Design of river crossings or other waterways under the jurisdiction of the United States Army Corps of Engineers’ shall be prepared under a separate report. Waterways under the Army Corp of Engineers may require a Conditional Letter of Map Revision prior to construction and a Letter of Map Revision after construction.

3.4.1 Drainage Facilities Design

Unless otherwise provided, drainage channels, inlet structures and storm sewers shall be designed in accordance with the procedures specified by Valley Metro and the local jurisdiction where the facility is located. Hydraulic calculations for culvert capacity shall be in accordance with the latest version of the Drainage Design Manual for Maricopa County, Arizona Volume 2 - Hydraulics.

A drainage report will be required to identify whether the existing storm drain system is adequate. The drainage report shall present alternatives to modify the existing storm drain system, including catch basin upgrades to capture the additional runoff created by the LRT project. Valley Metro will not upgrade existing storm drain systems that are currently undersized.

The existing depth of flow (based on drainage criteria of the local jurisdiction) in all streets shall not be increased due to the LRT guideway. Under no circumstance shall the LRT guideway divert or restrict existing flows. Existing drainage facilities must be protected or upgraded to allow existing flows to travel undiverted to existing outlet points. New LRT storm sewers shall be sized for the design frequency specified by the local jurisdiction.

Necessary replacements of existing storm sewers and appurtenances shall provide services equivalent to existing facilities.

Services to adjoining properties shall be maintained by supporting in place, by providing alternative temporary facilities, or by diverting to other points.

In all cases, design shall be carefully coordinated with the LRT underground electrical and communication system.

3.4.2 Precipitation – Intensity – Duration

Precipitation data shall be based upon NOAA Precipitation – Frequency Atlas of the Western United States. The only deviation from the NOAA Atlas procedures that are currently recommenced is the use of the short – duration (less than 1-hour) rainfall ratios that were published by Arkell and Richards (1986). The depth – duration – frequency (D-D-F) statistics in the NOAA Atlas are shown as a series of isopluvials maps of Arizona for specific durations and
return frequencies. Selected isopluvials maps for Maricopa County can be found in the Drainage Design Manual for Maricopa County, Arizona. Volume 1-Hydrology.

3.4.3 Design Discharge

The maximum expected discharge from drainage areas shall be computed using the Rational Method or other applicable procedures as specified in the latest Storm Drainage Manual for the local jurisdiction, or as approved by Valley Metro and the local jurisdiction.

3.4.4 Storm Drain Design

Storm sewers shall be designed in accordance with the procedures specified in the local jurisdiction's Storm Drain Design Manual and may have to be upsized, if the proposed guideways are shown to decrease the allowed existing capacity of flow in the street.

3.4.5 Minimum Velocities

Minimum velocities in pipes, culverts, and concrete-lined channels shall be 2.5 feet per second when flowing half full, or in accordance with local jurisdiction requirements, whichever is greater.

3.4.6 Minimum Pipe Sizes

The minimum pipe size shall comply with the latest design criteria and standards (i.e. design criteria manuals) of the local jurisdictions.

The minimum pipe required by Valley Metro for pipe size shall be:

- 24” for culverts (open at both ends) under guideways
- 18” for storm drains including connections to inlets
- 6” for slope drains
- 8” for underdrains

Sizes smaller than these shall not be used without authorization from Valley Metro and the local jurisdiction.

3.4.7 Minimum Pipe Clearance

For new pipes, a minimum of 5’-6” clearance is desirable from the top of the rail to the top of all track drainage pipes passing beneath the guideway bed, unless otherwise approved by Valley Metro. For existing pipes, 4-foot clearance from top of rail to top of pipes, otherwise relocations shall be required. See Figures 3-3 and 3-4.

Design exception will be allowed in instances where the City Engineer and Valley Metro agree that relocation of the required facilities is not feasible due to location and/or cost. The design exception letter template is located in Appendix B as part of this Design Manual.
3.4.8 Pipe Material and Loading

Existing circular storm drains under the guideway shall be evaluated for clearance requirements, material type, and structural strength for the required loadings. A field review of the storm drains needs to be documented as to the type of material, flow line grades, and condition of pipe. As-Built plans may not accurately portray the type or flow line elevations. Drains that do not meet the requirements may need to be replaced. Drains that do meet requirements can be left in place after approval by Valley Metro and the local jurisdiction. The types of storm drain material shall be as required in the latest design criteria and standards (i.e. design criteria manuals) by each jurisdiction.

3.4.9 Corrosion Protection

In all cases, drainage systems shall be designed with consideration for the LRT underground electrical and communications system, and shall include provisions for corrosion protection of facilities against stray currents. Refer to Chapter 19, Stray Current and Corrosion Control, for additional criteria.

3.4.10 Manholes

Manholes shall be designed according to the local jurisdictions latest Storm Drainage Manual. Manholes shall be provided at all changes in direction and shall be spaced as follows:

- For pipe diameters of 30" or less every 330 feet.
- For pipe diameters of 33" to 45" every 440 feet.
- For pipe diameters of 48" and greater every 600 feet.

3.4.11 Underdrains and Location

Underdrains shall consist only of perforated concrete or perforated plastic pipe at least 6 inches in diameter for lengths less than 500 feet and at least 8 inches in diameter for length greater than or equal to 500 feet. The perforated pipe shall be surrounded by a minimum of 4 inches of gravel drain material, and placed a minimum of 12 inches below subgrade. The underdrain system shall also be wrapped with filter fabric (minimum weight 4 oz/square yard) by placing the fabric between the gravel drain material and surrounding soil.

Underdrains shall be located in areas where it is anticipated that groundwater may interfere with the stability of trackbeds, roadbeds, and side slopes. In general, they may be used, based on geotechnical reports, in the following places:

- Along the toe of a cut slope to intercept seepage.
- Along the toe of a fill on the side from which groundwater emanates.
- Across the roadway at the downhill end of a cut.
- Along the periphery of any paved area under which groundwater is likely to collect.

Underdrains shall be used to drain ballasted track within the street right-of-way.
3.4.12 Slope Protection
Cut slopes shall be protected with intercepting ditches at the top of slope when significant flow may come from the ground surface above the cut. Slope benches shall be sloped toward a ditch running along the bench. Slopes shall be protected where necessary against erosion from concentrated flows with down drains.

3.4.13 Structural Design Codes, Manuals and Specifications
Unless otherwise specified herein, the structural design shall be based on the following codes, manuals, or specifications specified in Chapter 5, Structural Design.

3.4.14 LRT Loading
LRT loading shall be in accordance with Figure 5-1 of Chapter 5, Structural Design.

3.5 Right-of-Way
Light Rail Transit right-of-way requirements vary according to guideway configuration, which may be at-grade, on aerial structure, or in underground structure.

Right-of-way is the composite total requirement of all interests and uses of real property needed to construct, maintain, protect, and operate the transit system. Most right-of-way requirements are permanent in nature: however, there will be parcels of land needed on a temporary basis. These temporary parcels will be returned to the owner after the project has been completed. The intent of this project is to acquire and maintain the minimum right-of-way consistent with the requirements and to utilize good right-of-way practices. Because right-of-way plans approved by Valley Metro and the local jurisdictions are used as a basis for acquisition of property; all interests and uses required shall be shown on the right-of-way plans together with the detailed property data.

The taking envelope is influenced by the topography, drainage, ditches, retaining walls, service roads, utilities, and the nature of the structure and side slopes selected.

The limits of permanent right-of-way shall be shown on the right-of-way plans as a line connected by simple curves and tangents. Spiral curves shall not be used in right-of-way descriptions. Chords may be used instead of curves under special conditions.

3.5.1 Types of Right-of-Way
3.5.1.1 Fee Simple
Fee Simple is the highest and most complete ownership known in the law. Fee simple shall always be the first type of right-of-way to be considered for any surface or aerial construction. Parcels of land required for the project shall be shown with sufficient dimensions on a set of plans so legal descriptions can be written.

3.5.1.2 Permanent Easement
Easements are rights acquired by someone to use the land or property of another for a special or particular purpose. Easements may be created for a variety of purposes including but not limited to access, drainage, underground, aerial, supporting slopes, and utility. They may
involve the right to use only the subsurface of land, only the airspace over the land, or only the surface of the land. Easements shall be shown with horizontal and/or vertical limits as required to encompass the entire facility or structure with dimensions being shown on a set of plans so a legal description can be written.

An easement that provides space for transit structures and for the future maintenance of structures that support aerial facilities located on private property shall have definite lateral limits on the drawings. Where required, upper and/or lower limits shall be described.

3.5.1.3 Temporary Construction Easement (TCE)
Temporary construction easements are usually used for construction purposes. These easements are created with a definite duration period. These easements should provide sufficient space for the contractor to use for his construction purposes. When the project is complete, these easements will revert back to the property owner. Repair of any damages in the TCE area shall be done prior to their return to the property owner.

3.5.1.4 Utility Easements
Utility easements shall be in accordance with local and utility regulations including Maricopa County Recorder’s Offices and utility company easement requirements. Bearings and distances along the sides of the easement boundary shall be shown, as well as the length and width of the easements and ties to the limits of the right-of-way and monument lines.

3.5.1.5 Traffic Easements
Traffic easements may be used for conduits, j-boxes, and loop detectors in areas where sufficient right-of-way is not available.

3.5.2 Right-of-Way Criteria

3.5.2.1 Right-of-Way Limits
The following criteria are provided as a guideline for establishing the limits of right-of-way. The dimensions are given for minimum conditions and may need to be modified where engineering or real estate requirements dictate additional needs. Right-of-way limits shall be vertical or horizontal planes.

- At-Grade Construction
 - Upper Limit
 Normally an upper limit is not required. When an upper limit is required, the limit shall be described by the elevations of horizontal planes, stepped as required, and co-locating the steps with existing property lines or prominent suitable topographical features. The minimum desirable vertical distance from top of catenary support structure to horizontal plane is 2.0 feet.
 - Lateral Limit
 On exclusive rights-of-way, the minimum allowable distance from the centerline of the nearest track to the limit of the right-of-way is 8.0 feet.
 On restrictive rights-of-way, the minimum right-of-way is 29.0 feet.
Additional distances required, such as for maintenance road and drainage ditches, shall be added to the above.

In retained cuts or on retained fills, the minimum right-of-way required is measured laterally to 2 feet outside the outside edge of the retaining wall footing. Allowances shall be made for pile encroachments. In side cuts and unretained open cuts or fills, the slopes shall include side ditches plus 12 inches rounding. Soil walls and tie back walls shall have a minimum 5' beyond the anchorage.

- Lower Limit

The lower limit, when required, shall be defined in a manner similar to that for the upper limit, using a minimum vertical distance of 10 feet below top of rail, except in retained fill sections where the lower limit shall include the structural support system required for fill sections.

- Aerial Construction
 - Upper Limit

Where required by local conditions, the upper limit is delineated by elevations of horizontal planes, stepped as required, co-locating the steps with existing property lines or prominent suitable topographical features. The minimum required vertical distance from the top of catenary support structure to the horizontal plane is 2.0 feet.

- Lateral Limit

The lateral limit is 10 feet outside the centerline of each track. Additional permanent and/or temporary easements may be required for maintenance of and repairs to structures.

- Lower Limit

The lower limit, where required by local conditions and/or specifically directed by Valley Metro, shall be the ground level with specified use restrictions, except for crossing other rights-of-way. For aerial support structures, the lower limit shall include the support foundations.

- Storm Drainage
 - Open Ditches

The minimum total width for surface drainage easements shall be governed by local authority requirements, but in no case shall it be less than 6 feet for paved ditches and channels, and 8 feet for unpaved ditches.

 - Underground Drainage

Easement widths for underground drainage systems shall be approved by the local agency involved. As a guideline, the minimum easement width is 10 feet with 2 feet minimum clearance from outside edge of structure to easement line.

- Stations

Right-of-way required for stations shall include, but not be limited to, the space needed for platforms and shade structures, fare collection, waiting areas, station
ancillary facilities, “such as kiosk elements”, for maps and/or station identification, bike racks, landscape and enhanced landscaping at Station areas, and lighting. In addition to the structural, mechanical, and electrical requirements for space, the requirements for pedestrian and vehicular circulation space shall be observed.

3.5.3 Right-of-Way Information Requirements

Information on right-of-way plans shall be sufficient to prepare legal documents to allow the transfer of land title. They shall identify all properties, right-of-way, easements, utilities, abandonments, reference to resolutions if applicable, roadway, and surface features. Plans shall identify the right-of-way as being “open to the public” and “closed to the public” including continuous right-of-way crossing public as well as private space.

- Curve Data
 Spirals shall be reduced to circular curves at the limits of the right-of-way. Circular curves are the only types of curves acceptable for recording purposes. Curve data shall be shown on the right-of-way plan sheet in the table of curve data.
 Plans shall show the right-of-way envelope as being continuous crossing public as well as private space. Such private space shall be identified.

- Isolated Right-of-Way
 The boundary for areas supporting new construction, such as power substations, shall be defined geometrically with ties shown wherever the location is not contiguous to the right-of-way.

- Street Closings
 Separate drawings showing the areas of public property to be enclosed and used for the transit system shall be provided. These drawings shall be prepared in accordance with local government requirements.

3.5.4 Fencing

Fencing may be required in certain areas to provide security. Fencing shall be parallel to the track, forming an open-ended envelope and allowing unrestricted LRT movement.

Vehicle service, maintenance, and storage areas shall be secured by perimeter fencing.

Size and type of fencing or barrier shall be as determined by site-specific requirements and by the development requirements of the local jurisdiction.

3.6 Acquisition Process

The acquisition process involves several real estate components; which are completed in a sequential manner. The total acquisition process takes from 12 to 20 months to complete depending on the complexity of the negotiations and relocation requirements.

On federally funded projects the Record of Decision by the FTA would allow the acquisition process. Title reports on affected parcels should be requested at this time to identify the
ownership and title encumbrances. The “total acquisition” parcels should be identified at this time so appraisals can be completed for acquisition. The offers made for partial acquisition parcels should begin no later than halfway through the final design phase.

On locally funded projects title reports on affected parcels should be requested at approximately the 30% level of the design process to identify ownership and title encumbrances. The “total acquisition” parcels shall also be identified at this time so appraisals can be completed for acquisitions.

For additional acquisition details refer to the Real Estate Acquisition Management Plan.

All easements and right-of-way shall be verified and recorded after construction and revised as necessary.

3.7 Roadways

3.7.1 General

Unless otherwise specified, all road and street design shall be in accordance with the most current specifications and design guidelines of the involved local jurisdiction. For those cases where the local jurisdictions have no design guidelines, the latest Maricopa Association of Government (MAG) Uniform Standard Specification and Details for Public Works construction shall be used.

The design of public streets adjacent to the LRT facilities shall not preclude the construction of LRT stations as discussed in Chapter 6, Station Design and the operation of Light Rail Vehicles (LRV) as detailed in Chapter 7, Operations.

The criteria set forth in this section are applicable to the design of alterations of existing streets, new streets, and access roads.

The basis of design for alterations of existing streets shall be to replace in kind or to replace in accordance with current local jurisdiction standards, unless otherwise approved by Valley Metro and the local jurisdiction. New facilities shall be designed in conformance with the standards of the local jurisdiction and each city’s supplements to the MAG Standards and/or Specifications.

In general, the roadway improvements shall be designed to meet or exceed a 20-year life cycle to support the anticipated traffic use. Such improvements shall include curb, gutter, sidewalk, structural cross section of new pavements, traffic signal equipment locations, street lighting, drainage facilities, and associated appurtenances. Exceptions are normal street signing and pavement marking.

3.7.2 Roadway Geometrics

All horizontal alignment of public streets shall conform to the current specifications and standards of the involved local jurisdiction. In a case where the local jurisdictions have no codes or standards, the latest English version of the AASHTO A Policy on Geometric Design of Highways and Streets shall be followed.

All vertical geometric curves of public streets shall conform to the current specifications and standards of the involved local jurisdictions. In a case where the local jurisdictions have no
codes or Standards, the latest English version of the AASHTO A Policy on Geometric Design of Highways and Streets shall be followed.

All roadway sections of public streets shall conform to the current specifications and standards of the involved local jurisdictions. In a case where the local jurisdictions have no codes or standards, the latest English version of the AASHTO A Policy on Geometric Design of Highways and Streets shall be followed, and as listed below in these criteria. See Figures 3-3, 3-5, and 3-12 to 3-17.

3.7.3 Traffic Lane Widths

The following criterion indicates the minimum and desirable traffic lane widths. During the early stages of design, the design shall reference and compare the lane widths to the local jurisdiction’s design criteria and standards. Traffic Lane widths shall be approved by Valley Metro and the local jurisdiction early in the design.

In cases of lateral constraint, a width reduction may be necessary and would require local jurisdiction approval.

- **Through and Left Turn Lanes**

 \[
 \begin{align*}
 &10' \text{ absolute minimum}* \\
 &11' \text{ minimum} \\
 &12' \text{ desirable}
 \end{align*}
 \]

- **Right Turn Lanes/Curb Lanes**

 \[
 \begin{align*}
 &10' \text{ absolute minimum}* \\
 &11' \text{ desirable} \\
 &12' \text{ desirable minimum (City of Phoenix)}
 \end{align*}
 \]

- **Left and Right Turn Storage Lanes**

 \[
 \begin{align*}
 &16' \text{ absolute minimum}* \\
 \end{align*}
 \]

- **One lane with barrier curbs (e.g., frontage roads)**

 \[
 \begin{align*}
 &16' \text{ absolute minimum}* \\
 &18' \text{ minimum} \\
 &20' \text{ desirable}
 \end{align*}
 \]

- **Curb lane with parking**

 \[
 \begin{align*}
 &18' \text{ absolute minimum}* \\
 &19' \text{ minimum} \\
 &20' \text{ desirable}
 \end{align*}
 \]

- **Parking lane**

 \[
 \begin{align*}
 &8' \text{ minimum}
 \end{align*}
 \]

- **Bike Lanes**

 \[
 \begin{align*}
 &4' \text{ minimum - to lip of Gutter} \\
 &5.5' \text{ minimum - to face of curb} \\
 &6.0' \text{ desirable - to face of curb}
 \end{align*}
 \]

* Requires approval of local jurisdiction prior to use.

** Use local jurisdiction design standards for storage lengths. If a traffic analysis is available, the turn lane storage lengths shall be determined based on the results of the analysis.

3.7.4 Bus Bays

Bus bay design shall reference MAG Standard Detail No. 252 with a 10’ bus bay minimum width and a desirable width of 13’ or local jurisdiction standard detail, if applicable. Location of bus bays, bus bay shelters and installation and removal of existing bus bays/bus bay shelters are an
important design feature and shall be evaluated and approved early in design with Valley Metro, the local jurisdiction and the public transit department.

3.7.5 Paving

Paving replacement, whether total reconstruction, replacement of roadway cross section or a pavement overlay, shall be evaluated on a “case-by-case” basis. In some circumstances, the replacement of pavement is a non-federal participation cost to the local jurisdiction because they are receiving an enhancement. However, if the PQI of the existing pavement falls below 50 due to utility reconstruction and LRT construction, pavement replacement or rehabilitation will be considered. It is recommended that a pavement design report be prepared by a geotechnical engineering firm and recommendations for paving replacement be approved by the local jurisdiction and Valley Metro.

Road and parking surfaces shall be either concrete or asphalt. In areas of transit bus stop pull-outs, reinforced Portland cement concrete pavement is required.

All pavements in public streets shall be in conformance with the current specifications and practices of the involved local jurisdictions. In a case were the local jurisdictions have no codes or standards, the MAG Standard Details and Specifications shall be followed.

Restored pavements shall conform to widths prevailing prior to LRT construction. No street, sidewalk, or alley widening shall be included, unless required by new construction(such as ADA for project impacted facilities), or previously agreed to between the jurisdiction and Valley Metro.

3.7.6 Curbs and Curb Cuts

When new curb is constructed, the height of the vertical curb face above the finished pavement elevation shall be 6 inches or to the existing height if taller than 6 inches. Vertical curb constructed within ADOT right-of-way shall be seven (7) inches in height. Vehicle curb constructed within the City of Tempe on arterial roadways shall be seven (7) inches in height. The curb face may be decreased to no less than 4 inches along existing streets and sidewalks in order to minimize areas of sidewalk reconstruction and impacts to adjacent properties, subject to the approval of the local governing jurisdiction. The Designer shall verify the curb heights and details with the jurisdiction.

Curb returns shall be 35' radius at signalized intersections, as necessary, to prevent encroachment of large vehicles onto the guideway, or per the local jurisdictions design standard. Occasional curb return designs that differ from the standard require approval by the local jurisdiction.

The Designer shall verify adequate curb return design radii using turn template applications, at locations that require special needs, such as skewed intersections, large/oversize truck movements, etc. These locations shall be identified early in design.

The design of curb cuts and ramps shall be in strict accordance with the latest applicable provisions of the Americans with Disabilities Act of 1990 and 49 CFR Parts 37 and local jurisdictions standards and applications.
Curb cuts are to be included when curbs in public space are constructed or restored as part of the LRT Project.

Replacement of curb and gutter due to other incidental work such as private and public utility relocations, conduit/traffic signal installation, street lighting, LRT systems, etc., shall be considered part of the project, shown on the plans, and approved by Valley Metro and the local jurisdiction with respect to the limits of replacement.

3.7.7 Driveways and Alleys

Driveway and Alley designs shall comply with the local jurisdiction design standards and criteria and shall comply in strict accordance with the latest applicable provisions of the Americans with Disabilities Act of 1990 and 49 CFR Parts 37.

Driveway and alley curb and sidewalk design that require ADA Standards for Accessible Design ramps, shall be located within the local jurisdiction’s right of way. This may require purchase of additional right of way and will require approval from Valley Metro and the local jurisdiction.

Driveways shall not be added for vacant lots without approval of the local jurisdiction.

3.7.8 Sidewalks

The Designer shall reference the local jurisdictions design standards for the width of sidewalk and the width of the landscape buffer between the back of curb and new sidewalk. Sidewalk design and width shall be approved by the local jurisdiction.

Refer to Chapter 6, Station Design, for standard sidewalk and landscaped area widths at station locations.

Decorative sidewalks, including “Art”, which are impacted by LRT construction, shall be replaced in kind.

Replacement of sidewalk due to other incidental work such as private and public utility relocations, conduit/traffic signal installation, street lighting, LRT systems, etc., shall be considered part of the project and approved by Valley Metro and the local jurisdiction for the limits of replacement.

Impacts to local business and residential properties shall be considered in the design of the project due to replacement of sidewalks.

It is desirable to locate street lighting and fire hydrants at back of sidewalk, when the sidewalk is attached to curb.

The design of curb ramps within sidewalks shall be in strict accordance with the latest applicable provisions of the Americans with Disabilities Act of 1990 and 49 CFR Parts 37 and local jurisdictions standards and applications.

Streetscapes shall be designed so that street light poles, power poles, guy wires, OCS and other poles are located outside of the sidewalks, whenever possible, or the sidewalk widened to maximize clear paths for pedestrians.
AERIAL, STREET IMPROVEMENTS AND RAILROAD PLANS WILL NEED TO BE REVIEWED AND ANALYZED FOR BEST LOCATIONS, PRIOR TO SETTING FINAL MONUMENTS.

M.A.D. STANDARD DETAILS FOR MONUMENTS (HANDHOLE AND SURFACE TYPE MONUMENTS) SHALL BE USED FOR ALL NEW MONUMENTS SET.

EXISTING MONUMENTS TO BE TIED TO IMPROVEMENTS AND PERMANENTLY REMOVED.

TANGENT TIES TO BE SET ON EXISTING IMPROVEMENTS (CURB AND/OR SIDEWALKS) USING 1 1/2" BRASS CAPS. TIES TO BE INCLUDED IN OVERALL TRAVERSE/CONTROL NETWORK.

RECORD OF SURVEY TO BE PREPARED SHOWING ORIGINAL MONUMENT LAYOUT WITH ANNOTATION AND NEW SYSTEM OF MONUMENTS INCLUDING ANNOTATION FOR ALL TIES AND MID-POINT MONUMENTS, SO THAT ANY ONE MONUMENT CAN BE USED ALONG WITH ANY OTHER SINGLE MONUMENT. FULL PERIMETER OF SECTION, INCLUDING MID-SECTION LINES, TO BE SURVEYED AND ANNOTATED ON SURVEY.

FINAL SHEET OF SET SHALL ALSO INCLUDE COORDINATE PRINTOUT OF ALL POINTS IN SYSTEM. POINTS TO BE PRINTED TO THE EIGHTH (8) DECIMAL PLACE.

SEQUENCE OF SURVEY:
A) MONUMENTS TO BE REMOVED TO BE TIED OUT FIRST.
B) MONUMENTS TO BE REMOVED AND RELOCATED TO BE SET AT 4 FEET FROM CURB UNITS AND ON SECTION LINES.
C) TRAVERSE AND PREPARATION OF SYSTEM.
D) CONSTRUCTION OF RAILROAD.
E) PREPARATION OF RECORD OF SURVEY, LOCAL JURISDICTION APPROVAL, RECORDING OF SURVEY.
AERIAL STREET IMPROVEMENTS AND RAILROAD PLANS WILL NEED TO BE REVIEWED AND ANALYZED FOR BEST LOCATIONS, PRIOR TO SETTING FINAL MONUMENTS:

M.A.O. STANDARD DETAILS FOR MONUMENTS (HANDLE HOLE AND SURFACE TYPE MONUMENTS) SHALL BE USED FOR ALL NEW MONUMENTS SET.

EXISTING MONUMENTS TO BE TIED TO IMPROVEMENTS AND PERMANENTLY REMOVED.

TANGENT TIES TO BE SET ON EXISTING IMPROVEMENTS (CURB AND/OR SIDEWALKS) USING 1 1/2" BRASS CAPS. TIES TO BE INCLUDED IN OVERALL TRAVERSE/CONTROL NETWORK.

RECORD OF SURVEY TO BE PREPARED SHOWING ORIGINAL MONUMENT LAYOUT WITH ANNEXATION AND NEW SYSTEM OF MONUMENTS INCLUDING ANNEXATION FOR ALL TIES AND MID-POINT MONUMENTS, SO THAT ANY ONE MONUMENT CAN BE USED ALONG WITH ANY OTHER SINGLE MONUMENT, FULL PERIMETER OF SECTION, INCLUDING MID-SECTION LINES, TO BE SURVEYED AND ANNEXATED ON SURVEY. FINAL SHEET OF SET SHALL ALSO INCLUDE COORDINATE PRINTOUT OF ALL POINTS IN SYSTEM. POINTS TO BE PRINTED TO THE EIGHTH (8) DECIMAL PLACE.

SEQUENCE OF SURVEY:
A) MONUMENTS TO BE REMOVED TO BE TIED OUT FIRST.
B) MONUMENTS TO BE REMOVED AND LOCATED TO BE RESET AT 4 FEET FROM CURB LINES AND ON SECTION LINES.
C) TRAVERSE AND PREPARATION OF SYSTEM.
D) CONSTRUCTION OF RAILROAD.
E) PREPARATION OF RECORD OF SURVEY, LOCAL JURISDICTION APPROVAL, RECORDATION OF SURVEY.

NOTES

LEGEND:

(TYP) DENOTES TYPICAL
B/D DENOTES BEARING AND DISTANCE
APN AGGREGATE PARCEL NUMBER
R/W DENOTES RIGHT-OF-WAY

NEW SURVEY MONUMENTS AT STREET CROSSINGS
CUT OFF BY THE LRT

SCALE: N.T.S.
Figure 3-3: LRT Instreet Tracks – No Utility Zone for Underground Utilities

- 33'-8" ENVELOPE - NO UTILITY ZONE
- DOUBLE TRACK
- 20' ENVELOPE - NO UTILITY ZONE
- SINGLE TRACK
- 10'-0" MIN
- 13'-6" MIN
- W/CENTER POLE
- OR 7'-0" MIN. TO BACK OF CURB
- 2'-10"
- TRACK STRUCTURE
- PAVED OR BALLASTED
- 5'-8"
- PREFERRED CLEARANCE
- 1'-2"
- TOP OF TRANSVERSE UTILITIES
- NEW NON-LRT UTILITIES
- EXISTING NON-LRT UTILITIES
- LONGITUDINAL UTILITY
- (IN STREET PAVEMENT)
- LIMIT OF CASING PIPE, 4" MIN LARGER DIAMETER THAN CARRYING PIPE. SEAL IF REQUIRED
- NOT TO BE REDUCED WITHOUT PRIOR APPROVAL FROM RPTA

DESIGN CRITERIA
LRT INSTREET TRACKS
NO UTILITY ZONE FOR UNDERGROUND UTILITIES

VALLEY METRO

REV: 1
DATE: 05/28/15
PAGE NO: 3-3
Figure 3-4: Typical Utility Locations Open Ballasted Track Section

BENEATH LRT

ADJACENT TO LRT

* NOT TO BE REDUCED WITHOUT PRIOR APPROVAL FROM AUTHORITY
Figure 3-5: Utility Zone

33'-6" ENVELOPE - NO UTILITY ZONE
DOUBLE TRACK

20' ENVELOPE - NO UTILITY ZONE
SINGLE TRACK

Q TRACK

Q TRACK

10'-0" MIN
13'-6" MIN
10'-0"

W/CENTER POLE

OR 7'-0" MIN.
TO BACK OF CURB

Q OCS POLE

T/R

2'-10"
TRACK STRUCTURE
PAVED OR
BALLASTED

5'-6"
1'-2"

PREFERRED CLEARANCE

LRT

UTILITIES

EXISTING NON-LRT UTILITIES

NEW NON-LRT UTILITIES

TOP OF TRANSVERSE UTILITIES

(IN STREET PAVEMENT)
LIMIT OF CASING PIPE, 4" MIN LARGER
DIAMETER THAN CARRYING PIPE. SEAL IF REQUIRED

LONGITUDINAL UTILITY

NOTE:

UNDERGROUND UTILITIES MUST
BE RELOCATED IF THEY ARE
DIRECTLY BELOW THE TRACK
LESS THAN 4' DEEP AND
LESS THAN 10' HORIZONTALLY
FROM THE CENTER OF THE TRACK
Figure 3-6: COP Utility Zone for Water/Sewer

NOTE:
UNDERGROUND CITY OF PHOENIX UTILITIES MUST BE RELOCATED IF THEY ARE DIRECTLY BELOW THE TRACK LESS THAN 6' DEEP AND LESS THAN 18" HORIZONTALLY FROM THE CENTER OF THE TRACK.
NOTES

1. NEW SERVICE TAPS ON EXISTING MAINS SHALL BE INSTALLED BY THE CITY OF PHOENIX.
 CONTRACTOR SHALL SUPPLY MATERIAL PER SPECIFICATION AND COORDINATE WITH CITY CREWS.

2. EXISTING METER BOXES IMPACTED BY PROPOSED ROADWORKS SHALL BE REPLACED AND
 LOCATED TO OUTSIDE THE TRAVELED ROADWAY AS INDICATED ON THE PLANS. NEW
 BOXES AND APPURTENCANCES PER CITY STANDARDS SHALL BE PROVIDED BY THE CONTRACTOR.
 THE EXISTING METER CAN BE REUSED. RELOCATED METERS WILL BE INSTALLED BY CONTRACTOR.
 NEW METERS SHALL BE INSTALLED BY CITY CREW. CONTRACTOR SHALL COMPLETE ALL CONNECTIONS.

3. CASING DIAMETER SHALL BE 4" FOR 1" OR SMALLER SERVICE PIPES AND 6" FOR 1.5" TO 2.5"
 SERVICE PIPES. COORDINATE W/ CASING DETAIL.

* EXTEND 10' MIN. BEYOND STATION PLATFORM WHERE APPLICABLE.
Figure 3-8: COP Sanitary Sewer Service Crossing Metro

RESTRICTED UTILITY AREA

RUA TRACK

16' 16'

FIRST EXISTING JOINT OUTSIDE RUA

FLEXIBLE RUBBER COUPLING (TYP.)

EXISTING SEWER PIPE

NEW PIPE (TYP.) MATERIAL TO MATCH EXISTING

NEW DUCTILE IRON SEWER PIPE

CASING PIPE, PER TYPICAL DETAIL

FLOW

2 SHORT LENGTHS OF NEW PIPE LENGTH TO SUIT LOCATION OF FIRST EXISTING JOINT OUTSIDE OF RUA (TYP. EACH SIDE)

* FOOT MINIMUM COVER WHEREVER POSSIBLE. REDUCE DEPTH ACCEPTABLE WHERE APPROVED BY ENGINEER.

** EXTEND 10 FEET BEYOND STATION PLATFORM.
NOTES

1. SEE SPECIFICATIONS FOR CASING TYPE, DIMENSIONS AND COATING REQUIREMENTS.

2. CASING SHALL BE INSTALLED WITH SAME PIPE ZONE BEDDING AND BACKFILL AND TRENCH BACKFILL REQUIREMENTS AS PIPELINE.

3. ONE JOINT MAXIMUM PER CROSSING ON CASING.

4. CASING SHALL BE INSTALLED IN ONE SOLID LENGTH WITH FULL PENETRATION WELDS; OR IN TWO SECTIONS, BUTT JOINTED WITH FULL STRENGTH BUTT STRAPS; OR IN TWO SECTIONS BUTT JOINTED WITH FOUR 3" TACK WELDS (MIN) EVENLY SPACED AROUND CASING JOINT CIRCUMFERENCE WITH DRESSER COUPLING OVER JOINT.
NOTES

1. OVERCROSSES OF SRP IRRIGATION PIPE ARE REVIEWED ON A CASE-BY-CASE BASIS. EXCEPT FOR THOSE CASES SPECIFICALLY IDENTIFIED BELOW, OVERCROSSING ARE TYPICALLY NOT ALLOWED.

2. MAINTAIN MINIMUM 3' CLEARANCE BETWEEN SRP IRRIGATION PIPE AND OVERCROSSES SINGLE-SERVICE (RESIDENTIAL) UTILITY LINES OF 1" DIAMETER OR LESS, STREET LIGHT ELECTRIC LINES, OR TRAFFIC SIGNAL ELECTRIC LINES.

3. UTILITIES PARALLEL TO SRP IRRIGATION PIPE ARE REVIEWED ON A CASE-BY-CASE BASIS. LOCATE PARALLEL UTILITY OUTSIDE OF AREA SRP EXCAVATES WHEN MAINTAINING IRRIGATION PIPE. TYPICAL EXCAVATION INCLUDES AREA ABOVE AND TO EACH SIDE OF SRP IRRIGATION PIPE. SIDE EXCAVATION INCLUDES AREA ABOVE A LINE EXTENDING UPWARD AND OUTWARD AT A ONE-TO-ONE SLOPE FROM THE POINT OF LEVEL WITH THE BOTTOM OF AND TWO FEET BEYOND THE SIDE OF THE OUTSIDE BELL DIAMETER OF THE SRP IRRIGATION PIPE.

4. OTHER UTILITIES NOT PERMITTED IN THESE AREAS.

5. CLEARANCE IS MEASURED FROM OUTSIDE BELL DIAMETER OF SRP IRRIGATION PIPE. OUTSIDE BELL DIAMETER IS SIGNIFICANTLY LARGER THAN NOMINAL PIPE SIZE (INSIDE DIAMETER) NOTED ON PLAN/PROFILE DRAWINGS. SEE TABLE FOR NOMINAL PIPE SIZES AND OUTSIDE BELL DIAMETERS.

6. SPECIFIED CLEARANCES ARE FOR USE WITH RUBBER GASKETED REINFORCED CONCRETE PIPE (RGCPI) UP TO AND INCLUDING 72" NOMINAL PIPE SIZE. GREATER CLEARANCE OR REPLACEMENT IS REQUIRED FOR LARGER DIAMETER (RGCP), CASING IN PLACE PIPE (CIP) AND NON-REINFORCED CONCRETE PIPE.

7. ASSURE CONTINUOUS SUPPORT AND PROTECTION OF SRP IRRIGATION PIPE. DAMAGE TO SRP IRRIGATION PIPE/SYSTEM WILL BE REPAIRED BY SRP. ALL DIRECT AND INDIRECT COSTS SHALL BE BORNE BY OTHER UTILITY/LICENSEE.

8. TRENCH BACKFILL COMPACTION SHALL BE NARROW ASSOCIATION OF GOVERNMENTS (NAG) TYPE I OR TYPE II, EXCEPT THAT 95% COMPACTION SHALL BE REQUIRED FROM ONE FOOT ABOVE TOP OF PIPE TO BOTTOM OF TRENCH. WATER CONSOLIDATION IS NOT PERMITTED.

9. COMPLY WITH (NAG) UNIFORM STANDARD SPECIFICATIONS AND STANDARD DETAILS UNLESS OTHERWISE NOTED IN PROJECT SPECIFIC SRP DOCUMENTS. MOST STRINGENT REQUIREMENTS SHALL APPLY UNLESS SPECIFICALLY NOTED OTHERWISE IN SRP DOCUMENTS.

10. COMPLY WITH ALL APPLICABLE STATUTES, ORDINANCES AND REGULATIONS INCLUDING BLUE STAKE LAW (A.R.S. Sec. 40-360-21 ET SEQ.).

11. THESE GUIDELINES ARE PROVIDED AS A GENERAL AID TO PLANNING. ACTUAL SRP REQUIREMENTS MAY VARY BASED ON SITE-SPECIFIC CONDITIONS, OPERATIONAL CONSIDERATIONS, ETC.

12. AN SRP LICENSE IS REQUIRED FOR UTILITIES CROSSING PARALLEL TO SRP IRRIGATION PIPE IN SRP RIGHT-OF-WAY. SRP REQUIRES ENGINEER DESIGNED UTILITY CROSSING LOCATION AND EXCAVATION PLAN.

13. REQUESTS FOR SRP LICENSES ARE HANDLED ON A CASE-BY-CASE BASIS. CONTACT SRP AT 236-2592 REGARDING LICENSES FOR SITES LOCATED NORTH OF THE SALT RIVER AND AT 602-236-5786 REGARDING LICENSES FOR SITES SOUTH OF THE SALT RIVER.

14. NOTIFY SRP INSPECTOR A MINIMUM OF 72 HOURS BEFORE STARTING CONSTRUCTION IN OR AROUND SRP IRRIGATION FACILITIES. AN IRRIGATION OUTAGE AGREEMENT MUST BE COMPLETED BY THE CONTRACTOR IF A DRY-UP OF ANY PART OF THE IRRIGATION SYSTEM WILL BE NEEDED DURING CONSTRUCTION. ISSUANCE OF A LICENSE DOES NOT PROVIDE FOR A CONSTRUCTION DRY-UP.

<table>
<thead>
<tr>
<th>DESIGN CRITERIA</th>
<th>SRP CRITERIA FOR UTILITY CROSSING OR PARALLEL TO SRP IRRIGATION PIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE NO.</td>
<td>3-10</td>
</tr>
</tbody>
</table>
Figure 3-11: SRP Rail Crossing Standard Detail

1. UNLESS DIRECTED BY ENGINEER
Figure 3-12: Typical Four Lane Roadway with Center Platform

NOTE:
*SEE SECTION 3.7.3 FOR RECOMMENDED WIDTHS.
NOTE:
*SEE SECTION 3.7.3 FOR RECOMMENDED WIDTHS.
Figure 3-14: Typical Four Lane Roadway

NOTE:
×SEE SECTION 3.7.3 FOR RECOMMENDED WIDTHS.
Figure 3-15: Typical Two Lane Roadway Single Track

NOTE:
*SEE SECTION 3.7.3 FOR RECOMMENDED WIDTHS.
NOTE: UNDERDRAINS SHALL BE DRAINED INTO EXISTING STORM PIPE SYSTEMS.
4.0 TRACKWORK

4.1 Introduction

The purpose of this Chapter is to establish the standards and design policies for the detailed engineering, materials and construction standards for trackwork and its interface with other elements on the Valley Metro LRT project. Limits of work covered by this section are one (1) foot below subgrade as defined herein to top of rail and the necessary interfaces of trackwork with other elements.

The practices and material described herein shall govern the design of track for the LRT system and includes the required interfacing of trackwork with other elements of the system such as guideway, bridges, track slabs, transition slabs, electrification system, signal system, drainage, etc. Construction plans and specifications shall comply with these criteria, Track Standards and Directive Drawings based on the current requirements of the:

- AREMA - American Railroad Engineering and Maintenance of Way Association
- AAR - Association of American Railroads
- Transit Cooperative Research Program Report No. 155

Criteria for using shared right-of-way with other railroads shall conform to both FRA and FTA policies.

4.2 Track System

Trackwork systems are composed of a number of elements, each of which has a definite interaction with the elements of the system. Because of this interaction, the design criteria for trackwork must be undertaken as a systems approach with a cause and effects analysis being undertaken on each of the elements. In performing this trackwork design, consideration of allied factors such as safety, stray current, ride comfort, noise, and vibration must not be overlooked. In addition, the relationship of trackwork design to the design of other elements of the system, such as train control and type of vehicle must be recognized and accommodated early in the design process.

The design of project trackwork shall reflect light rail transit requirements and recommended practices to the fullest extent practicable.

4.2.1 Trackwork Classification

The tracks to be constructed under this project can be classified as follows:

- LRT Main Line Track
- LRT Yard & Secondary Track

Typical trackwork sections of ballasted types, direct fixation and embedded track construction are shown in the Trackwork Standard Details.
4.2.2 Track Construction Types

Trackwork shall be divided into the following types of construction:

- Ballasted Track
- Embedded Track
- Embedded Bridge Track
- Direct Fixation Bridge Track
- Shop Track

A number of these types of track except bridge structure and shop track may be classified as guarded track and as special trackwork, as specified elsewhere in these criteria.

Direct fixation track shall be the standard used for trackwork constructed:

- On aerial structures
- In exclusive LRT use in subways, tunnels, and underpasses
- In at-grade mainline tracks, radii less than 300 feet, or where limited right-of-way width exists and these restricting segments either exceed 350 feet in length or are adjacent to other segments of direct fixation or embedded track. It shall also be used in at-grade sections of less than 350 feet in length, which are bounded on each end by either direct fixation track or embedded track.

Direct fixation track construction in all types of guideway configuration shall be designed to utilize a second pour concrete method of construction as shown in Figures 4-2, 4-3 and 4-4.

Details of at grade direct fixation slab track shall be developed during detail design to suit site-specific situations.

There are no restrictions pertaining to the use of CWR in direct fixation track.

Direct fixation aerial structures shall be protected from the large longitudinal forces, which may exist in CWR. Therefore, CWR shall not be terminated on aerial structure. The rail shall extend beyond the bridge structure such that a minimum of 110 fastenings on each rail or crossties are engaged. Any reduction of this number of fastenings shall require special anchorage devices.

Termination as used above means absolute termination. The placement of a turnout or crossover between ends of continuous welded rail does result in absolute termination of the rail. The continuous welded rail is considered terminated by the configuration of the special trackwork switch and frog component wedge shaped fasteners. Special trackwork locations on aerial direct fixation shall be designed independently to suit specific design condition, which may result from anchoring the rail.

Embedded track shall be the standard for trackwork constructed in business districts and in streets. The concrete section shall be level with the top of rail in the guideway as shown in the
standard details. There are no restrictions pertaining to the use of continuous welded rail in embedded track. A typical track section is indicated in the Standard Details.

Bridge track shall be designed to suit the restricted structure depths and consider conditions of CWR rail over the structure. The in depth design shall be finalized after the preliminary design is undertaken at each structure site.

Shop trackwork shall be CWR installed within the limits of the maintenance shop building and the perimeter apron extensions located at entry and exit doors. Except in pit areas, installation is similar to the embedded trackwork. In pit areas, welded 115 RE rail shall be base welded to the steel girder support installed longitudinally beneath the rail.

4.2.3 Transition Slabs

A transition slab shall be provided at all track structure interface of differing track modulus. Transition slabs as shown on the Trackwork Standard Drawings shall be installed at interfaces between ballasted track and:

- Direct fixation track,
- Embedded track,
- Except at maintenance facilities.

The crosstie spacing shall be adjusted to account for the difference in track modulus between the more rigid track and the adjoining ballasted track. The minimum ballast depth above a transition slab measured from bottom of tie, shall be 12 inches.

4.3 Track Gauge and Wheel Gauge

4.3.1 Track Gauge

Track gauge shall be the standard gauge of 4 feet 8-1/2 inches, measured between the inner (gauge) sides of the heads of the rails at a distance of 5/8 inch below the top of rails.

4.3.2 Wheel Profile and Gauge

Since the LRT will not share running track with railroad freight operations, the wheel profile shall generally conform to the standard transit wheel, configuration as shown in the Standard Details. State of the art “worn wheel” design which better conforms to the natural head radius of the 115 RE rail section shall be used for LRT vehicle wheels but this shall not affect critical track dimensions such as guard check gauge. Back-to-back gauge on all rail equipment wheel sets, including hi-rail vehicles, shall conform to transit standards.

4.3.3 Maintenance Equipment

Rail mounted maintenance equipment (Hi-railers, etc.) shall have the same wheel profile as LRT Vehicles.
4.4 Track Construction Tolerances

Light Rail Transit track construction tolerances are determined by taking into consideration safety, speed of operation, and the type of service to be provided. The track construction tolerances are listed in the Standard Specifications and Trackwork Standard Drawings.

4.5 Track Components

4.5.1 Ballast-Subballast-Subgrade

Proper design of the roadbed and ballasted elements of the track structure is very important to provide an adequate foundation and to minimize the maintenance requirements of the transit system. Roadbed and ballast sections shall be designed and analyzed to minimize the overall right-of-way width required while providing a uniform, well-drained foundation for the track structure. Rail support track modulus shall be designed in accordance with the AREMA Manual, Chapter 16.

The track structure includes the subgrade, sub-ballast, ballast, crossties and rail with associated other track materials.

In designated LRT right-of-way, access to the track shall be provided for maintenance and emergency work. This requires provision for highway vehicles, and for vehicles equipped with flanged wheels to drive onto the track at strategic locations. Where practicable, a service road on the ROW and paralleling the track shall be provided with adequate turn-around facilities where the road is not continuous.

Subgrade: The subgrade is the finished surface of the roadbed below the sub-ballast, supporting the loads transmitted through the rails, crossties, ballast and sub ballast. The subgrade shall be analyzed to determine whether it has both uniform stability and the strength to carry the track loadings expected. AREMA recommends that, for most soils, pressure on subgrade be lower than 20 psi (2,880 psf) to maintain subgrade integrity. Uniformity is important because it is differential settlement rather than total settlement that leads to unsatisfactory track alignment. The use of geotextile or geogrids between the subgrade and subballast can be advantageous under some conditions.

Existing ballasted tracks - Existing track bed shall be evaluated prior to civil and track design to determine if subgrade conditions are adequate for reuse or if remedial measures will be necessary. In some cases, subballast and ballast depths may be reduced based on the existing conditions.

In locations where the LRT track will be constructed upon existing ballast from an abandoned track, the existing ballast may eliminate the need for subballast. In these locations, additional aggregate shall be mixed with existing ballast to improve the gradation and bring the ballast to the specified subballast quality.

Subballast: The subballast for all tracks shall consist of a uniform layer placed and compacted over the entire width of the subgrade following the profile and cross section thereof. The minimum depth of subballast measured from the top of the subgrade shall be 8 inches in new track embankments. Additional depth shall be used when necessary to decrease subgrade
pressure. Where widened shoulder service roads are provided, the full depth of the subballast shall be extended across the full width of the service road. Subballast shall be crushed stone gradation in accordance with ASTM C29, C136, and D15 and site-specific additional design requirements.

Ballast: Ballast is a selected crushed and graded hard aggregate material, with physical properties as set forth in the standard specifications, placed upon the subballast for providing support for the rail and crossties and distribution of the track loadings to the subgrade. AREMA states that ballast (plus sub-ballast) must be of sufficient depth to distribute pressure between tie and subgrade. The ballast must sustain and transmit static and dynamic loads in three directions (transverse, vertical and longitudinal) and distribute those loads uniformly over the subgrade. The prime functions of the ballast is to drain the track system, distribute the rail vehicle loads to the subgrade, and hold the track in proper alignment, cross level and grade. It can also cushion the ride and isolate from ground any vibrations, which originate at the wheel-rail interface. It also permits relatively easy adjustment of the track alignment. The gradation must provide the means to develop the stability and density requirements for the ballast section and provide the void space necessary to allow proper run-off of precipitation.

The minimum depth ballast measured from the top of subballast to the underside of track tie shall be 10 inches. In curved track, the minimum depth of ballast shall be 10 inches measured under the low rail or the inside rail. In dual track sections, the inside track establishes the top of ballast.

Ballast gradations smaller than AREMA size No. 4 shall not be used on tracks constructed with concrete crossties. Ballast gradation conforming to AREMA size No. 3 shall be used in main tracks with concrete crossties. Ballast for concrete crossties must be limited to either crushed granites or traprocks as described in AREMA Manual for Railway Engineering. AREMA size No. 4 shall be used in yards and other non-main line tracks using timber crossties. For simplicity and uniformity, the same material quality specification, except for gradation, should be considered for all ballast installations.

4.5.2 Crossties and Switch Ties

Due to specific requirements for both timber crossties and concrete crossties, this portion of the design criteria is provided to conform to the specific type of track tie selected.

Concrete Crossties: Monoblock concrete crossties are the preferred concrete crosstie system for ballasted mainline, storage tracks, and yard tracks. Procurement specifications for them shall provide design requirements for fastener inserts for rail, restraining rail and tie reinforcement. Rail pads shall be designed to prevent excessive flexure and fatigue of the rail hold down element and rail seat abrasion, while still providing the desired noise attenuation and electrical resistivity. Monoblock concrete crossties with lateral resistance patterns on the sides of the tie are required. The track construction specifications shall include emphasis on construction methods for laying concrete crossties on an initial ballast layer that shall prevent center binding and other problems, which could cause cracking during subsequent construction operations.
Standard concrete crossties shall be required for:

- Main Line, storage, and yard track consisting of two running rails
- Main Line track consisting of two running rails and either restraining rail or emergency guardrail or both.

Crossties, which shall support emergency guardrails or restraining rails, shall include insulated steel threaded inserts to which these items can be attached. The special concrete crossties shall be designed to accommodate additional protection rails within a single tie design. Refer to the Track Standard Drawings.

Switch Ties: Special trackwork support shall be on concrete special trackwork ties. Refer to the Trackwork Standard drawings for typical layouts.

Crosstie Spacing: Tie spacing shall be set to provide sufficient lateral, longitudinal, and vertical restraint for each type of track. Crossties shall have the following minimum longitudinal spacing:

- 30-inch centers for tangent tracks and track with curves above 750 foot radius
- 27-inch centers at the high outside rail for track with curves below 750-foot radius.
- Special trackwork switch tie spacing shall be in accordance to specified Trackwork Standard Drawings.

4.5.3 Tee Rail and Girder Groove Rail

New 115 RE section rail shall be used for all mainline-ballasted, yard and shop, and direct fixation track on the LRT system. All new tee rails shall conform to the current AREMA Chapter 4.

Rail for embedded track shall be new girder groove rail (53R1), or block rail if girder groove rail is not available. Girder rail sections shall be manufactured in accordance with prevailing UTC specifications and ASTM A2 as applicable. This selection is subject to modifications if the standard flangeway of the girder guardrail is not wide enough for the selected wheel contour when used in tight radius curves.

High strength rail shall be used at station areas, other areas of frequent starting and stopping, on grades of five percent or greater, curves with radius equal to or less than 2000 feet, and in areas where high wear rates or internal rail stresses are anticipated. Seldom-used secondary, emergency, or storage tracks with sharp curvatures and grades shall not be provided with high-strength rail. High strength rail shall also be used throughout all special trackwork.

Where high strength rail is used in curves, it shall extend into tangent track on the approach and departure ends of the curve a minimum distance of 20 feet but not more than 35 feet. When two sections of high strength rail are close together and conformance to the above criterion would result in an intermediate segment of standard control-cooled rail less than 156 (2 x 78) feet in length, the high strength rail shall be made continuous through all three segments.

All running rail sticks shall be continuously flash butt welded into the longest length strings feasible for installation. Thermite (field) welds shall be used to join the lengths of flash butt-
welded rail. Embedded track within confined or restricted locations such as business districts may be considered for total field weld installation with the approval of Valley Metro. Where insulated joints are required in CWR, they shall be bonded (glued) type to withstand the longitudinal forces.

Rails in short radius curves shall be precurved using standard roller bending method. Specifications for horizontally shop-curved rail shall require that the rail base lay flat after bending. Rail shall be precurved under the following circumstances:

- Tee rail in CWR ballasted track horizontal curves of radius less than 300-foot.
- Tee rail in either embedded or direct fixation track or bolted yard curves of radius equal to 500 feet or less.
- Tee rails with vertical curve radius sharper than 1000 feet.
- Girder or block rails with horizontal radius less than 750 feet or vertical curvature with a radius sharper than 1600 feet.

4.5.4 Restraining Guardrail for Curved Track

Tracks having a centerline radius of less than or equal to 750 feet and other specific locations where restraining rail would prove to be beneficial shall have restraining rail added to the inside running rail. All track having a centerline radius less than or equal to 100 feet may require both running rails guarded. Such locations shall be analyzed and recommendations made to Valley Metro.

Restraining rail design, as shown in Standard Details consist of 132 RE rail fastened to the 115 RE running rail and in turn fastened to either the concrete crossties or a combination direct fixation track fastener on second pour plinth as applicable. Where restraining rail is required within a special trackwork layout, it may be fabricated from either the vertically mounted 132 RE rail or another fabricator’s design approved by Valley Metro.

Unless otherwise approved or directed, embedded track, which requires guarding, shall use 53R1 or 51R1 girder groove rail with special raised lip (tram). Consideration shall be given during design to specific track gauge and flangeway requirements that will be associated with the final selected LRV wheel profile and diameter. The restraining rail assembly or girder groove rail shall extend beyond each end of a guarded simple curve (no spirals) a minimum distance of 18 feet. Where the track geometrics include a spiral, the curve guarding shall generally extend to and beyond the beginning and ending points of the spiral.

4.5.5 Special Trackwork Plates for Concrete Switch Ties

Ballasted special trackwork for mainline shall use resilient clips and insulated plates to provide stray current protection in accordance with the criteria determined by the traction power and corrosion control designers.

Ballasted special trackwork for maintenance yard track shall be of similar design to the resilient clip insulated plate design used on the main line.
Standard concrete switch ties with resilient clips and insulating shims between the clip and rail base shall be utilized.

4.5.6 Direct Fixation Rail Fasteners

Direct fixation rail fasteners to the footprint design in Figure 4-5 for aerial and fixation at-grade slab track shall provide the required lateral and longitudinal restraint for continuous welded rail and the electrical insulation required for the negative return current and the proper operation of track signal circuits.

Direct fixation rail fasteners shall have the following longitudinal spacing:

<table>
<thead>
<tr>
<th>Trackwork</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangent or curved track with radius greater than 500 feet</td>
<td>30-inch centers</td>
</tr>
<tr>
<td>Curved track with radius 500 feet or less and greater than 300 feet</td>
<td>27-inch centers</td>
</tr>
<tr>
<td>Curved track with radius 300 feet or less</td>
<td>24-inch centers</td>
</tr>
</tbody>
</table>

Direct fixation fasteners shall be randomly positioned, plus or minus 3 inches, for tangent and curved track with 30-inch centers to combat vehicle/rail harmonies, which could lead to corrugation.

Direct fixation rail fasteners shall provide a longitudinal restraint force of 2,750 pounds per fastener and restrain a broken rail gap to less than 2.0 inches wide.

Direct fixation rail fasteners will have vertical stiffness value depending on the application and location of the fastener. In standard running track locations where noise and vibration and other criteria are not an issue, the typical vertical stiffness range shall be between 100,000 pounds per inch and 140,000 pounds per inch. The value of the fastener stiffness will be confirmed by Valley Metro.

4.5.7 Direct Fixation Steel Shims

Steel shims are used as required on direct fixation to raise the rail to its design vertical alignment. Shims are typically produced in ranges of thicknesses from 1/16 inch to 1/2 inch to provide flexibility in achieving the final design elevation.

Steel shims shall be hot dipped galvanized in accordance with the latest appropriate codes.

The shape, size and configuration of the steel shims shall conform to the outline of the direct fixation fasteners and must be able to be removed or added without fully removing the DF Fastener from the concrete surface. The shim shall be provided with slotted longitudinal holes to allow the shim to be centrally positioned under a laterally adjusted fastener.

4.5.8 Direct Fixation Special Trackwork

Rail fasteners for use in direct fixation special trackwork shall be of a design compatible with the standard fastener used in conventional special trackwork on switch ties and shall be spaced as shown on the Trackwork Standard Drawings.
4.5.9 Insulated Joint Bars

Continuous Welded Rail: Insulated joint bars of the bonded (glued) type shall be used in CWR wherever it is necessary to electrically isolated contiguous rails from each other in order to comply with track signaling or traction power criteria. Track bolts shall be equipped with self-locking nuts. Insulated joint bars shall be the “D” type section providing clearance for modified spring clip type rail fastenings.

Jointed Rail: Wherever insulated joint bars are required in yard track constructed with jointed rail, they shall be polyurethane encapsulated bolted insulated joint bars.

All insulated joints shall be located as suspended joints to obviate the need for insulated tie plates. Special modified spring clips may be required at insulated joint locations.

4.5.10 Joint Bars

The use of bolted joints shall be minimized during design except in those locations where the use of jointed rail is specified. Joint bars shall be 36-inch six-hole bars conforming to AREMA standards punching patterns. Track bolts, nuts and lock washers, or pin bolts shall conform to AREMA standards.

4.5.11 Compromise Joints (Transition Rails)

Compromise joints shall be used to connect 115 RE rails to Girder Groove or Block Rail. Thermite (field) welds shall be used for permanent connections between rail sections. Compromise joints, welds or rails shall not be located within special trackwork units or within 30 feet of the toe end of any turnout stock rail.

4.5.12 Derails

Either sliding or split switch point derails shall be used to prevent out-of-control transit vehicles from fouling adjoining or adjacent tracks. Derails shall be installed on the descending grade end of yard and secondary track normally used for storage of unattended light rail vehicles if this track is directly connected to the main line track and if its prevailing grade is descending toward the main line track. Derails shall be placed at the clearance point (centers to be determined) of all tracks, which connect to a LRT main track. Derails shall be used at other track locations where they would likely prevent or minimize injury to passengers and personnel, and/or damage to equipment.

Derail shall be located to derail equipment in the direction away from the main track. Refer to Trackwork Standard Drawings for typical locations of derails.

4.5.13 Miscellaneous Track Appurtenances

End of Mainline Track Arrestors or End Stops: Friction type end stops shall be used to absorb the kinetic energy of stopping a vehicle by sliding along the end of track rail. Friction stops can be designed to cover a wide range of energy absorption situations from single vehicle to multi-vehicle train with the reasonable minimum of impact and damage.
Bumping Post: Track bumping post shall be designed to engage the anticlimber on the LRT vehicle. They shall be installed at the ends of all stub-end yard or maintenance tracks.

Embedded Track Drains: The flangeways provided for the LRT vehicle wheels in embedded track form natural conduits for storm water runoff. In order to prevent the formation of ponds at low points of sag vertical curves, track drains of the type shown on the Trackwork Standard Details shall be used. Such drains shall also be placed at appropriate intervals along grades to prevent the flangeways from overflowing. A track drain shall be placed on the downgrade end of embedded track segments, which adjoin ballasted or direct fixation track in order to minimize fouling of track ballast and accumulation of silt and debris upon track slabs. Track drains shall be placed on the upgrade side of embedded special trackwork to minimize the amount of water entering the switch areas. Other locations where the use of track drains may be appropriate shall be reviewed during final design. Cutting openings in girder groove or block rails for drainage shall be performed with drilling or machining methods only, to prevent damage to the rail strength.

Insulating Boots: All embedded rail shall be encased in insulating boots to prevent stray current leakage. The boot shall extend to the top of concrete on both sides of the rail (see standard drawings for details).

4.6 Special Trackwork

The term “special trackwork” designates the trackwork units necessary where tracks converge, diverge, or cross one another. Special trackwork includes turnouts, single crossovers, and double crossovers with diamond crossings. All ballasted special trackwork design shall be based on the AREMA standards to meet the special conditions of the LRT system. Embedded special trackwork, which conforms to European standards, may be considered depending on the type of special trackwork required and specialization of the item.

Special trackwork on the LRT system may consist of ballasted, direct fixation and embedded trackwork. Ballasted special trackwork shall be constructed on concrete switch ties as stated previously. Embedded special trackwork shall consist of double tongue switch turnouts and track crossings. Direct fixation turnouts shall be similar to ballasted track turnouts except that the rails, switches and frogs shall be fastened to a second pour concrete plinth on slab using insulated resilient rail fasteners.

- **Ballasted Special Trackwork:** All special trackwork shall be designed and constructed in strict accordance with Valley Metro’s Trackwork Standard and Directive Drawings. Turnouts and crossovers shall be located in ballasted track wherever possible.

- **Direct Fixation Special Trackwork:** Direct fixation special trackwork shall be similar design to ballasted special trackwork except direct fixation fasteners shall be applied for concrete plinth installation.

- **Embedded Special Trackwork:** Embedded special trackwork shall be designed to suit the restricted street configurations. Standard components shall be used whenever feasible. The designer shall look for opportunities to make multiple use of custom embedded trackwork components, such as curved frogs of particular radius.
Embedded turnouts may vary in design sizes from conventional designs. Generally, embedded turnouts include curved switches and frogs and are designated by the turnout radius (100 feet, 25 meters, etc.). The straight number 8, 6, and 4 frogs may be used in the LRT embedded special trackwork where appropriate.

Embedded switches shall be based on 115RE tee rail switch variety generally in accordance with the designs illustrated in the AREMA “Portfolio of Trackwork Plans”.

Embedded frogs shall be of cast contoured manganese or monoblock steel section with special welded toe and heel arms. In noise or vibration sensitive areas, to both ease frog point batter and provide a consistent running surface at frogs and track crossings consideration shall be given to flange bearing design. Crossing frogs shall be designed in a similar manner.

Special trackwork shall be located to reduce the exposure of pedestrians to the operating or moveable mechanisms and to minimize requirements for special catenary and signal structures. Special trackwork shall not be located in areas designated for pedestrian crosswalks. Where this objective proves to be difficult to achieve, crosswalks may be located between the switch and the frog provided that pedestrians are nowhere exposed to a metallic walking surface or flangeway wider than would occur if the pedestrian crossing were located away from the special trackwork unit.

The limits of any trackwork design or construction contract shall not be located within a special trackwork unit or curved track.

Special trackwork shall be located in tangent track, unless otherwise approved by Valley Metro. There shall be no actual superelevation (E_a) in any special trackwork units. All special trackwork shall be located on tangent vertical profile grades.

The minimum length of horizontal tangent track between any point of switch and the end of a station platform shall be per Section 2.2.1 Horizontal Alignment - Station stops.

The minimum length between point of switch and point of switch; heel of frog and point of switch; point of switch and point of switch (Opposite hand turnout); or heel of frog to point of switch (opposite Hand through) shall be as shown in Figures 4-6 to 4-9.

Tangent distances between point of intersection of turnout (PITO) and the beginning of horizontal or vertical curve shall be in accordance with directive drawings and were developed based on the following criteria:

- Minimum distances are obtained by locating the beginning of horizontal or vertical curves at a point that is 35 feet beyond the turnout from point of switch or point of frog.
- Desirable distances are obtained by locating the beginning of horizontal or vertical curves ahead of a turnout at a point that is 45 feet (approximately the length of one articulated LRV car body section) from the point of switch. Curves following a turnout are set beyond the last long switch tie.
- Absolute minimum distances are obtained by locating the beginning of horizontal or vertical curves 20 feet ahead of the point of switch. Non-superelevated horizontals curves may begin beyond the farthest end of the joint bars connecting the running rail to
the heel of the frog. Vertical curves and superelevated horizontal curves following a turnout shall not begin until after the last long switch tie.

Turnouts are set to provide connections to branch lines, storage tracks, and sidetracks and to merge two main tracks into a single track at the end of a double track segment. Crossovers consist of two turnouts located to allow traffic to cross over from one track to another, both tracks usually being in parallel. Where crossovers are required, one right hand and the other left hand, it is desirable that they be located as two back-to-back single crossovers. If this is not possible, or if extraordinary site conditions make it more economical, a double crossover may be used. The size of turnout or crossover selected depends upon its purpose, desired design speeds and local geometrical constraints. The normal and maximum operating speeds through the various turnouts designated for use on the LRT system are shown in Table 4-1.

Table 4-1: Turnout Operating Speeds

<table>
<thead>
<tr>
<th>Turnout</th>
<th>Maximum (EU=3")</th>
<th>Normal (EU=1-1/2")</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 EQL</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>8 EQL</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>10 EQL</td>
<td>34</td>
<td>30</td>
</tr>
</tbody>
</table>

For design purposes, the normal operating speed shall be used. The usual application of turnouts is given in Table 4-2.

EU = Unbalanced Superelevation

Table 4-2: Application of Turnouts

<table>
<thead>
<tr>
<th>Turnout Size (Frog No.)</th>
<th>Curved Switch Length</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>13'-0"</td>
<td>Equilateral Pocket Track to Match No. 10 Turnouts Off Main Line</td>
</tr>
<tr>
<td>6 (1)</td>
<td>13'-0"</td>
<td>LRT Yard Tracks only</td>
</tr>
<tr>
<td>8 (1)</td>
<td>19'-6"</td>
<td>Minimum mainline track turnout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emergency crossovers, etc. also in yard leads</td>
</tr>
<tr>
<td>10</td>
<td>19'-6"</td>
<td>Preferred mainline track turnout, Mainline Connection to Yard, Permanent Turn backs, Pocket Tracks and Crossovers</td>
</tr>
<tr>
<td>4 - 7</td>
<td>17'-0"</td>
<td>Embedded Street Turnouts</td>
</tr>
</tbody>
</table>

(1) Where No. 6 and 8 turnouts are used in ballasted mainline track, and will be frequently used on the diverging side, consideration shall be given to the use of a fully guarded design. Such fully guarded turnouts should be considered at any location where a low number turnout must be used due to geometric constraints. Such locations include the entry to the system’s Maintenance and Storage Facility yard from the main line, frequently used and critical purpose turnouts in the yard, and turnback tracks or wye tracks.

(2) End of double track turnouts should be placed as equilateral only if future extensions will not occur and if geometry permits. If a lateral turnout is used at the end of double track location, the straight side should be given to the facing point movement. Junction turnouts should be placed as equilateral if the traffic will be about equal on both branches and geometry permits. If not, the mainline side should favor the facing point-traveled branch.
As all special trackwork is a source of noise and vibration, its proposed location shall be determined with due consideration given to those factors.

All joints in LRT mainline track special trackwork shall be welded except at insulated joint locations. LRT yard and secondary track special trackwork shall have bolted joints except the main lead turnouts to the Maintenance Facility Yard and Storage Track yard areas.

Where circumstances suggest that turnouts of non-standard design be considered, they shall conform to the criteria above, and shall be used only upon the approval of Valley Metro.

All LRT ballasted and direct fixation special trackwork shall be designed to match 115 RE rail. Embedded turnouts shall be designed to match adjacent rail.

Non-standard special trackwork such as slip switches, moveable point crossings, or lap turnouts may be considered in the design layout only with the approval of Valley Metro.

4.6.1 Switch Machines – Power Operated and Manual

Switches may be operated by power operated switch and lock movements; electrically locked hand-operated machines; or hand-operated trailing switch stands, depending on the location and purpose of the switch. Selection of a switch operating device and the space requirements for such devices shall be coordinated with design of the train control system and Chapter 11, Signaling.

4.7 At – Grade Highway Crossings

Due to track geometry, possible curves, superelevation and concern for stray current, the design of at-grade crossings in mainline track shall be embedded track design. The design of at-grade crossings of LRT yard and secondary track shall be based upon the use of the conventional concrete railroad grade crossing materials. Aprons at the Maintenance Facility shall be embedded track design matching the interior building standards.

4.8 Traction Power – Impact on Track

The relationship of trackwork design to the design of other elements of the system, such as train control, electrification, civil-structural works, drainage, and the Light Rail Vehicle (LRV) must be included in the total design process. The design selected for these other elements will affect the design parameters for trackwork so it’s vital for the trackwork designer to know how the other elements will affect the design of the track structure.

The purpose of the power distribution system is to conduct current from the substation to the vehicle pantograph. The positive side of the distribution system includes all positive power cable, overhead catenary, and various disconnecting devices, all located outside of the substation. The track system forms the return side of this circuit back to the substation. The negative return system usually consists of both running rails. All rail joints and electrical track connections must be electrically “bonded” through an exothermic process (Cadweld or Thermoweld), with the exception of any temporary connections. In special designs when required the negative return is supplemented by means of negative paralleling cables. See Chapter 10, Traction Power, for additional requirements.
Bolted joints in negative return rail segments shall be electrically bonded across the joint bars with high conductivity bonds through an exothermic process (Cadweld or Thermoweld). The negative return rails of parallel tracks shall be cross-bonded frequently to equalize the currents that traverse them. In segments that use both running rails for return, all rails of parallel tracks shall be crossbonded through an exothermic process (Cadweld or Thermoweld). Crossbonding locations shall be identified to the track designers by the traction power system designer, working in conjunction with the train control system designer. Appropriate measures shall be taken during the design of all types of trackwork, including embedded track and highway grade crossings, to minimize the leakage of stray current from the track structure to the ground. This work shall be consistent with system corrosion control requirements. Embedded track shall be protected as shown in the Trackwork Standard Drawings. See Chapter 19, Stray Current and Corrosion Control, for additional requirements.

4.9 Signaling and Train Control – Impact on Track

Although train control design will not affect the selected trackwork design concept, it can affect specific parts of the design. The prime example of this interrelationship is the need for the location of insulated joints in the running rails to accommodate train control requirements. Such joints are normally required at the extremities of interlockings, within individual turnouts and crossovers, at approach track circuit boundaries, at the end of station platforms at select locations, and at other locations to be determined by the train control design.

The LRT signaling system includes track circuits and other wayside devices which require different differing types of coordination to suit ballasted and embedded track zones. Impedance bond installation areas and requirements must be coordinated with track structure. Insulated joints at limits of track circuits are to be opposite each other (within 4 feet 6 inches) to facilitate underground ducting, traction crossbonding and to minimize wheel noise.

4.10 Rail Grinding or Brushing

Prior to revenue service all newly installed mainline rail shall be contour surface ground or brushed using a production type rail grinder or other approved equipment. Rail grinding or brushing is required to:

- Remove mill scale, rust, surface imperfections and railhead irregularities
- Mitigate the onset of rail corrugation
- Optimize ride quality
- Reduce airborne noise and vibration
- Extend rail and wheel life
- Facilitate traction power return and signal shunting

Grinding or brushing procedures for rail in embedded track shall not damage the top of the rubber boot nor the surrounding embedment surface.
4.11 Noise and Vibration Attenuation

Noise along the LRT right-of-way primarily originates from the LRV wheel and rail at the point of contact generating noise and vibration in the LRV, trackwork components, and track support structures.

Trackwork design can have a substantial effect on noise and vibration. Design and selection of trackwork components shall consider the following methods for controlling and/or reducing noise and vibration adjacent to commercial, institutional and residential areas:

- Use of resilient or elastomeric bonded direct fixation fasteners
- Use of resilient rail seat pads for concrete ties
- Use of continuous welded rail (CWR) on mainline
- Optimization of turnout locations where possible to minimize impact of noise and vibration generated from wheel transfer impact
- Use of special dampening materials such as ballast mats, elastomers for embedded sections, and direct fixation fasteners designed to minimize noise and vibration in sensitive areas
- Rail grinding or brushing prior to revenue service
- Use of wayside sound barriers where appropriate.
- Use of flange bearing frogs
- Use of spring frogs or movable point frogs
- Use of dampened spring switches
THIS PAGE INTENTIONALLY LEFT BLANK
Figure 4-1: Typical Ballasted Track Section
Figure 4-2: Tangent Direct Fixation Track

CONCRETE PLINTH DESIGN TANGENT DIRECT FIXATION TRACK

- Profile Grade Line (PGL)
- Top of Rail
- Chamfer 45°
- Track Gauge 4'-8½"
- Rail Hold-Down Assembly
- Lateral Adjustment Provided at 4" Dia Anchor Bolt Location DM
- Track 1'-5½" ± 1½"
- Direct Fixation Fastener with Cant
- Vertical Shim ½" Thick Min.
- Plinth Concrete
- Structure Slab 1½" Clearance - 3 Sides
- 3" x 5 Bars @ 10" for 30" CTRs (TYP)
- Slab Stirrups (TYP)
- "A" Dimension to be Established using Component Heights and Type of Plinth Installation at Surface or Recessed.

- PGL ELEV
- At Top of Low Rail

VALLEY METRO

DESIGN CRITERIA

TANGENT DIRECT FIXATION TRACK

DATE: 07/29/13

VALLEY METRO

PAGE NO.

4-2
Concrete plinth design curved superelevated direct fixation track

Valley Metro

Design Criteria

Curved superelevation direct fixation track

Profile grade line

Valley Metro

DESIGN CRITERIA

CURVED SUPER ELEVATION DIRECT FIXATION TRACK

VALLEY METRO

Profile No. 4-3
Figure 4-4: Curved Superelevation Direct Fixation Track with Restraining Rail

SUPERELEVATION TAG TO BE BONDED ON TOP OF PLINTH (APPROXIMATE LOCATION)

PLINTH PLANE PARALLEL TO TOP OF RAIL PLANE WHEN FASTENER CONTAINS CANT

SHIM AS NEEDED 5½" MAX 4" MIN

LONGITUDINAL REINFORCING BARS 9° (TYP)

SLAB STIRRUPS (TYP)

ROUGHEN TOP OF SLAB PRIOR TO PLACING PLINTH CONCRETE, APPLY BONDING AGENT

CONCRETE PLINTH DESIGN CURVED SUPERELEVATED GUARDED DIRECT FIXATION TRACK WITH RESTRAINING RAIL

VALLEY METRO
Figure 4-6: Point of Switch to Point of Switch

<table>
<thead>
<tr>
<th>TURNOUTS</th>
<th>DIMENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>NO 6 TO NO 6</td>
<td>22' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>35' DESIRABLE</td>
</tr>
<tr>
<td>NO 6 TO NO 8</td>
<td>22' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>35' DESIRABLE</td>
</tr>
<tr>
<td>NO 6 TO NO 10</td>
<td>22' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>35' DESIRABLE</td>
</tr>
<tr>
<td>NO 8 TO NO 8</td>
<td>29' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>39' DESIRABLE</td>
</tr>
<tr>
<td>NO 8 TO NO 10</td>
<td>29' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>39' DESIRABLE</td>
</tr>
<tr>
<td>NO 10 TO NO 10</td>
<td>29' ABS MIN</td>
</tr>
<tr>
<td></td>
<td>39' DESIRABLE</td>
</tr>
</tbody>
</table>

NOTES:
(1) THE ABOVE FIGURES ARE BASED ON 32" TRUCK CENTERS AND 7" AXLE CENTERS.
(2) DISTANCE "A" SUBJECT TO CHANGE BASED ON ACTUAL VEHICLE DIMENSIONS.
(3) NO 8 TURNOUTS USING 13'-0" CURVED SWITCH.
Figure 4-7: Heel of Frog to Point of Switch (Similar Hand Turnouts)

Turnouts

<table>
<thead>
<tr>
<th>Turnouts</th>
<th>Distances</th>
<th>Designs Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø</td>
<td>Ø</td>
<td>A</td>
</tr>
<tr>
<td>NO 6 TO NO 6</td>
<td>36'-9"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 6 TO NO 6</td>
<td>36'-9"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 6 TO NO 8(2)</td>
<td>36'-9"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 6 TO NO 10</td>
<td>36'-9"</td>
<td>31'-5"</td>
</tr>
<tr>
<td>NO 8 TO NO 6</td>
<td>47'-5"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 8 TO NO 8</td>
<td>47'-5"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 8 TO NO 10</td>
<td>47'-5"</td>
<td>31'-5"</td>
</tr>
<tr>
<td>NO 10 TO NO 6</td>
<td>58'-10"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 10 TO NO 8</td>
<td>58'-10"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 10 TO NO 10</td>
<td>58'-10"</td>
<td>31'-5"</td>
</tr>
</tbody>
</table>

Notes:
1. Turnout Ø track must curve away from turnout Ø lateral track.
2. No Ø turnouts using 13'-0" curved switch.

Valley Metro

Design Criteria

Heel of Frog to Point of Switch (Similar Hand Turnouts)
Figure 4-8: Point of Switch to Point of Switch (Opposite Hand Turnouts)

TURNOUTS

<table>
<thead>
<tr>
<th>No 6 to No 6</th>
<th>No 6 to No 8</th>
<th>No 6 to No 10</th>
<th>No 8 to No 8</th>
<th>No 8 to No 10</th>
<th>No 10 to No 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>⌂</td>
<td>⌂</td>
<td>⌂</td>
<td>⌂</td>
<td>⌂</td>
<td>⌂</td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>⌂</th>
<th>⌂</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>⌂</td>
<td>⌂</td>
<td>11'-3" ABS MIN 35' DESIRABLE</td>
<td>21'-3"</td>
<td>21'-3"</td>
<td>53'-9" ABS MIN 77'-6" DESIRABLE</td>
</tr>
<tr>
<td>No 6 to No 6</td>
<td>No 6 to No 8</td>
<td>No 6 to No 10</td>
<td>No 8 to No 8</td>
<td>No 8 to No 10</td>
<td>No 10 to No 10</td>
</tr>
</tbody>
</table>

| (1) | (1) | 22' ABS MIN 35' DESIRABLE | 21'-3" | 31'-5" | 74'-8" ABS MIN 87'-8" DESIRABLE |
| (3) | (3) | 29' ABS MIN 39' DESIRABLE | 21'-3" | 31'-5" | 91'-10" ABS MIN 101'-5" DESIRABLE |

NOTES:

2. (The above figures are based on 32' Truck Centers and 7' Axle Centers.
 Distance "A" Subject to Change Based on Actual Vehicle Dimensions.
3. No 8 Turnout using 13'-0" Curve Switch.

VALLEY METRO

DESIGN CRITERIA

POINT OF SWITCH TO POINT OF SWITCH (OPPOSITE HAND TURNOUTS) 4-8
Figure 4-9: Heel of Frog to Point of Switch (Opposite Hand Turnouts)

<table>
<thead>
<tr>
<th>Turnouts</th>
<th>Distances</th>
<th>Designs, Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>36'-9"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 6 TO NO 6</td>
<td>36'-9"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 6 TO NO 8</td>
<td>36'-9"</td>
<td>31'-5"</td>
</tr>
<tr>
<td>NO 8 TO NO 6</td>
<td>47'-5"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 8 TO NO 8</td>
<td>47'-5"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 8 TO NO 10</td>
<td>47'-5"</td>
<td>31'-5"</td>
</tr>
<tr>
<td>NO 10 TO NO 6</td>
<td>58'-10"</td>
<td>21'-3"</td>
</tr>
<tr>
<td>NO 10 TO NO 8</td>
<td>58'-10"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>NO 10 TO NO 10</td>
<td>58'-10"</td>
<td>31'-5"</td>
</tr>
</tbody>
</table>

Minimum 9'-0" rail plus thermite welds - Heel of frog to end of stock rail.

Notes: (1) NO 8 turnouts: using 13'-0" curved switch.
5.0 STRUCTURAL DESIGN

5.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the basic structural design on the Valley Metro LRT project. Structures include bridges, underground structures (cut-and-cover tunnel sections), retaining walls, soundwalls, U-sections, transit stations (at-grade and aerial) and appurtenances, buildings, construction structures, and other miscellaneous structures.

5.2 Design Codes, Manuals and Specifications

The following codes, manuals, and specifications shall be applicable to the design of structures (all publications listed shall be the latest edition unless noted otherwise):

- American Association of State Highway and Transportation Officials (AASHTO) Standard Specifications for Highway Bridges hereinafter referred to the AASHTO Standards.
- AASHTO LRFD Bridge Design Specifications.
- AASHTO Guide Specifications for Design and Construction of Segmental Concrete Bridges.
- AASHTO Manual for Condition Evaluation of Bridges
- AASHTO Guide Specifications for Horizontally Curved Highway Bridges
- AASHTO Guide Specifications for Strength Evaluation of Existing Steel and Concrete Bridges
- AASHTO Guide Specifications – Thermal Effects in Concrete Bridge Structures
- American Railway Engineering and Maintenance–of–Way Association for railways design and maintenance standards hereinafter referred to as the AREMA Manual.
- Arizona Department of Transportation Structural Design Guidelines.
- Arizona Department of Transportation Detailing Manual.
- Arizona Department of Transportation Standard Specifications for Road and Bridge Construction.
- ASCE 7, Minimum Design Loads For Buildings and Other Structures
- American Concrete Institute (ACI) ACI 318 Building Code Requirements for Reinforced Concrete hereinafter referred to as ACI 318.
• AISC 341-05 Seismic Provisions for Structural Steel Buildings.
• Urban Design Guidelines for Bridges and Walls
• Transit Cooperative Research Program (TCRP) Report 57 Track Design Handbook for Light Rail Transit
• Post-Tensioning Institute (PTI) Recommendations for Prestressed Rock and Soil Anchors
• Maricopa Association of Governments Uniform Standard Specifications and Details for Public Work Construction

In the event of conflict between these sources, provisions of ADOT govern over AASHTO; AASHTO and ADOT govern over Precast/Prestressed Concrete Institute (PCI), American Concrete Institute (ACI) and AISC; and the rail transit provisions govern over all other references.

• International Building Code (IBC).

The most recent edition of International Building Code (IBC), ASCE 7, Minimum Design Loads For Buildings and Other Structures, Structural Specialty Code and Fire and Life Safety Code shall be used or applicable building code used by the City or local jurisdiction enforcing the code. Note: The most recent may not be the Code that has been adopted by the State/City. Uniform Building Code is no longer used.

5.3 Loads and Forces

The actual live loads and forces shall be determined based upon the following loads and forces.

5.3.1 Dead Load

The dead load shall consist of the weight of the basic structure and the weight of all elements permanently supported by the structure such as: trackwork, electrification, railings, barriers, utilities, walkways, canopies, walls, and partitions.

5.3.2 Live Loads

Structures subject to light rail vehicle (LRV) train loading shall be designed for the maximum vehicle loading shown in Figure 5-1. The loading of selected rail maintenance equipment shall be assumed to have an axle load/configuration that does not exceed the standard fully loaded LRV. Structural calculations shall be required to confirm the adequacy of the design after the LRV characteristics are confirmed.

Transit passenger stations and other structures not subject to LRV loading shall be designed for live loads prescribed in the International Building Code (IBC) and ASCE 7, Minimum Design Loads For Buildings and Other Structures or applicable building code used by the City or local jurisdiction enforcing the code.
Minimum live loads for the transit passenger stations shall be:

- Public spaces including passenger platforms, stairways, escalators, mezzanines, corridors, and public restrooms: 150 psf
- Office areas: 125 psf
- Storage areas: light storage - 125 psf, heavy storage - 250 psf

Equipment spaces (rooms in transit stations or in separate buildings) shall be designed for 250 psf, or the actual weight of equipment, whichever is greater.

5.3.3 Impact

Vertical impact on structures subject to LRV train loads (See Figure 5-1) shall be as follows:

- Continuous multi-span structures = 30%
- Simple span structures less than 100 feet = 30%
- Simple span structures between 100 to 160 feet = 40%

Vertical impact does not apply to abutments, foundations, wall type piers, underground structures with 3 feet or more of cover and base slabs supported by earth (either at-grade or in subways).

Impact on structures subject to LRV loading shall be in accordance with these requirements and in accordance with the AREMA manual. Impact on structures subject to highway loading shall be in accordance with the requirements in the AASHTO Standard Specifications and ADOT Structural Design Guidelines.

5.3.4 Derailment Loads

Derailment loads shall be those produced by the LRT vehicle placed with its longitudinal axis parallel to the track.

5.3.4.1 Application of Derailment Loads

Derailment loads shall be applied to all superstructure and substructure elements subjected to LRT loadings.

5.3.4.2 Vertical Derailment Loads

Lateral vehicle excursion shall be assumed as follows:

- For track constructed with an emergency guardrail placed 10-inches from each running rail, the lateral vehicle excursion shall vary from 4 inches minimum to 10 inches maximum. Restraining rails, which are placed adjacent to the running rails for reducing wheel wear, shall not be considered as emergency guardrails.
• For tangent track and curved track with radii greater than 5,000 feet and lacking emergency guardrails, the lateral vehicle excursion shall vary from 4 inches minimum to 3 feet-0 inches maximum.

• For track with smaller radii, and where the distance from the rail to the edge of the deck slab is less than 3 feet-8 inches the maximum excursion shall be adjusted so that the derailed wheel flange is located 8 inches from the rail traffic face of the nearest barrier, if any, or the edge of the deck.

When checking any component of superstructure or substructure that supports two or more tracks, only one train consists on one track shall be considered to have derailed, the other track being either unloaded or loaded with a stationary train as the situation dictates.

All elements of the structure shall be checked assuming simultaneous application of all derailed wheel loads. However, the reduction of positive moment in continuous slabs due to derailed wheel loads in adjacent spans shall not be allowed.

The vertical derailment load shall be as follows:

\[DR = L + ID \]

Where:

- \(L \) = LRT vehicle live load.
- \(ID \) = Derailment impact at 100 percent of the axle load to be applied to any two adjacent axles at a time and normal impact factor for all other axles, which produces critical loading condition for the structures.

5.3.4.3 Horizontal Derailment Loads

At all sections lacking emergency guardrails, with maximum vehicle speeds between 45 miles per hour and 65 miles per hour, horizontal force due to derailment loads shall be taken as 30 percent of the weight of a single vehicle acting 2 feet above top of rail and normal to the structure centerline for a distance of 10 feet.

At all sections lacking emergency guardrails, with maximum vehicle speeds less than 45 miles per hour, horizontal force due to derailment loads shall be taken as 10 percent of the weight of a single vehicle acting 2 feet above top of rail and normal to the structure centerline for a distance of 10 feet.

At all sections which include emergency guardrails, with maximum vehicle speeds of 65 miles per hour or less, horizontal force due to derailment loads shall be taken as 10 percent of the weight of a single vehicle acting 2 feet above top of rail and normal to the structure centerline for a distance of 10 feet.

5.3.5 Other Loads and Forces

Other loads and forces (i.e., wind, flowing water, thermal, longitudinal, centrifugal, shrinkage, etc.) on structures shall be as follows:

- Structures subject to LRV or highway loading: AASHTO Standards;
- Structures subject to railroad loading: AREMA Manual;
- Other structures: International Building Code (IBC) or applicable building code used by the City or local jurisdiction enforcing the code; and
- Bridges subject to river flows and scour: AASHTO Standards.

5.4 Seismic Design
Seismic design for all structures subjected to LRT loads shall be in accordance with the ADOT Structural Design Guidelines. Seismic design of buildings and other structures for the forces and displacements produced by ground shaking shall be in accordance with the International Building Code, ASCE 7, Minimum Design Loads for Buildings and Other Structures, AISC Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-05).

5.5 Soils and Geologic Data
The soils in the Phoenix Metropolitan area vary. Soil and geologic data and/or reports for the preliminary design of structures shall be site-specific data. Preliminary recommendations shall be provided in the project structural reports prepared during the Preliminary Engineering phase. On Final Design, site-specific soil and geological data shall be obtained to develop the design parameters.

Commonly used foundations for bridges, retaining structures, and buildings in the Phoenix Metropolitan area include: spread footings; driven precast concrete piles; and drilled shafts. Foundation recommendations shall be made in a site-specific project geotechnical report(s). Foundations shall be designed according to AASHTO, ADOT Standards, or local jurisdiction standards. River scour where applicable shall also be considered in the report.

5.6 Reinforced and Prestressed Concrete
Reinforced and prestressed concrete structures shall be designed in accordance with the requirements of the following:
- Structures subject to LRT train loading: AASHTO and ACI 318
- Structures subject to railroad loading: AREMA Manual
- Structures subject to highway loading: AASHTO and ADOT Standards
- Buildings and other structures: ACI 318

5.7 Structural Steel
Structural Steel structures shall be designed in accordance with the requirements of the following:
- Structures subject to LRV loading: AASHTO and AISC
- Structures subject to railroad loading: AREMA Manual
- Structures subject to highway loading: AASHTO and ADOT Standards

5.8 Earth Retaining Structures

Cut and fill earth-retaining structures will vary in different geologic settings along the LRT rail alignments. The selection of the types of retaining structures and their design shall be based on the recommendations in the site-specific project geotechnical report(s). Commonly used earth retaining structures in the Phoenix Metropolitan area include reinforced concrete cantilever walls and mechanically stabilized earth (MSE) walls. Other wall types may be utilized where site conditions dictate. Consideration should be given to “top-down” construction techniques in cut situations, where right-of-way permits.

5.9 Underground Structures

All underground structures shall be classified in one of the categories listed below. For each category, the following assumptions shall be made:

5.9.1 Reinforced Concrete Box Line and Station Section

These structures retain earth but are not free to yield significantly. As a minimum, four basic loading cases shall be investigated. Load values shall be developed from geotechnical information. Additional permanent, temporary, and construction loading cases shall be investigated as required.

Case 1: Full vertical and long-term horizontal load.

Case II: Full vertical load, long-term horizontal load on one side and short-term horizontal load on the other side.

In underground concrete box structures that could be subject to unequal lateral pressures, the structural analysis shall consider the top slab as both restrained and unrestrained against horizontal translation in arriving at maximum shears, thrusts, and moments. However, the ratio of horizontal displacement to height of the wall need not exceed 0.0005.

Case III: Full vertical load with short-term horizontal load neglecting groundwater pressure on both sides.

Case IV: Only dead vertical load with long-term horizontal load including hydrostatic pressure.

Foundation Pressures: Vertical pressure on foundation slabs may be divided into hydrostatic and earth pressure components. The hydrostatic component shall be distributed across the width of the foundation in proportion to the depth of each portion of the basic slab below the design groundwater table.

Distribution of the earth pressure distribution shall be based on specified construction procedures if they affect the distribution, and may include elastic foundation effects if significant changes in frame or slab stress are introduced thereby. Where a box structure rests on soil
subgrade, a uniform distribution of subgrade soil reaction shall be assumed as one possible condition.

- For design, the horizontal earth pressure distribution diagram shall be trapezoidal. Compression forces shall not be considered in shear design of the top and bottom slab in box sections.

- In evaluating the design for temporary loadings produced by construction conditions such as the removal of horizontal struts, consideration shall be given to:
 - Allowable increase in stresses due to the temporary nature of the loading.
 - Creep in the concrete.
 - Effect of soil arching.
 - Wall and slab flexibility.

- Where it is anticipated that re-strutting will be proposed by the contractor, due to the limitations inherent in the design of the permanent structure, the construction specifications are to stipulate that the working drawings, supporting computations, and order of procedure submitted for approval by the contractor must reflect proper consideration of such aspects as magnitude of preload in replacement struts, crushing of packing, and thermal-induced stress and deflection of the permanent structure. The contractor’s proposal shall also detail the proposed instrumentation and monitoring thereof to ensure that the permanent structure shall not be overstressed or otherwise damaged.

- In all cases, the specifications for support of excavation must reflect any limitations inherent in the design of the permanent structure.

- Allowance must be made for corrosion control in accordance with Chapter 19, Stray Current and Corrosion Control.

5.9.2 Reinforced Concrete Retaining Walls

These structures are free to yield to earth pressure. In retaining walls up to 20 feet-0 inches in height, the design earth pressure shall be computed in accordance with recommendations of the geotechnical report. Retaining walls above 20 feet-0 inches in height shall be designed on the basis of specific soils information relating to the backfill material using an acceptable method as identified in the Geotechnical Report. Cantilevered retaining walls shall have a minimum Factor of Safety of 1.5 for overturning and sliding. Walls adjacent to roadways shall be design for vehicle impact loads.

5.9.3 Shafts

Permanent shaft walls shall be reinforced concrete. Loadings imposed on the shafts by the surrounding medium shall be determined by the designer in accordance with the Geotechnical Report and shall be consistent with the shaft configuration.
5.9.4 Sound Walls

Ensure sound wall design provides through access to adjacent neighborhoods and appropriate land uses. Sound walls shall comply with the *Urban Design Guidelines for Bridges and Walls*. Soundwalls adjacent to roadways shall be designed with a vehicle barrier at the base. Walls at these locations shall be designed for vehicle impact loads.

5.10 Portals and U-Sections

In locating portals and determining the ends of U-sections and walls, consideration shall be given to providing protection against flooding resulting from local storm runoff.

Adequate provision shall be made for resistance to hydrostatic uplift with the immediate and effective removal of water from rainfall, drainage, groundwater seepage, or any other source.

U-sections, with both walls continuous with a full-width base slab, shall be used for open-cut sections where the top of rail is less than 4’ above the maximum groundwater table. Above that level, independent reinforced concrete cantilever retaining walls may be considered for design.

U-sections may be analyzed as continuous structures on elastic foundations. If at any station the two walls are of unequal heights, then the factor of safety against sliding shall be a minimum of:

- 1.5 with no passive resistance of the soil.
- 2.0 with passive resistance of the soil.

Wall thickness for U-sections shall be designed by using:

- The geotechnical soils report recommendations for coefficient of lateral earth pressure, at-rest case.
- Hydrostatic pressure.
- Surcharge effects.

U-section grade slab design thickness shall be 6 inches greater than the wall thickness, with a minimum thickness of 24 inches. If the weight of the grade slab (in psf) is less than 40 percent of the hydrostatic head (in psf) as measured from the bottom of the grade slab, then the grade slab shall be designed for uplift pressure.

If, at the last U-section segment away from the portals, the abutting at-grade trackway does not consist of a track slab, then a depressed approach slab shall be provided to permit the construction of tie-and-ballast trackbed up to the end of the typical base slab without a sharp break in support at that point.

5.11 Aerial Structures

The criteria set forth in this section shall pertain specifically to the design of bridges carrying light rail transit loadings.
5.11.1 Design Specifications

AASHTO current Standard Specifications for Highway Bridges shall govern the design and construction of aerial structures supporting LRV loadings.

The Strength Design Method (Load Factor Design Method as per AASHTO) shall be used for the design of all structural components and connections. To ensure serviceability and durability, permanent deformations under overloads, live load deflections, and fatigue characteristics under service loadings shall be investigated.

5.11.2 Application of Loadings

Light Rail Vehicle Loading is defined in Figure 5-1. Unless otherwise directed by Valley Metro, use this loading diagram for structure design on the LRT system. For structures carrying LRV loads, one train per track shall be applied for both strength and serviceability considerations in all materials. When all or a portion of deck width is dedicated exclusively to LRT, only the LRV loads are to be applied to that width.

5.11.3 Reduction in Load Intensity

For structures carrying LRV loads, a track shall be treated as a traffic lane in applying the provisions of AASHTO, current standard specifications for highway construction.

5.11.4 Special Design Considerations

5.11.4.1 Vibration and Deflection Control

To limit vibration amplification due to the dynamic interaction between the superstructure and the LRV, the first-mode natural frequency of flexural vibration of each guideway span shall generally be not less than 2.5 cycles per second and no more than one span in a series of three consecutive spans shall have a first-mode natural frequencies less than 2.5 cycles per second provided that due consideration is given to possible vibration interactions between the structure and the LRV, and their effect on vertical impact loading.

To ensure rider comfort, the deflection of longitudinal girders under normal live load shall not exceed 1/1000 of the span length. For main cantilever girders, the deflection under normal live load shall not exceed 1/350 of the cantilever span.

A special analysis shall be conducted for any bridge or superstructures having a first mode of vibration, which is less than 2.5 Hertz, or for the condition when more than one span in a series of three consecutive spans has the first mode of vibration, which is less than 3.0 Hertz.

This analysis shall model the proposed structure and the proposed LRV. The analysis shall contain a sufficient number of degrees of freedom to allow modeling of the structure, vehicle truck spacing, vehicle primary suspension, vehicle secondary suspension, and the car body. It shall make provision for the placement of the vehicle on the structure in various locations in order to model the passage of the LRV. When the exact configuration of either the vehicle or the structure is not known, the study shall assume a reasonable range of parameters and shall model combinations of those parameters as deemed appropriate.
The analysis shall determine whether impact loads in excess of 30 percent of LRV are required for the design of the structure. The analysis shall also determine whether certain operational considerations such as speed restriction or other provisions are required in order to ensure the safe operation of the LRV over the structure.

5.11.4.2 Trackwork
Consideration shall be given to the thermal force interaction between the structural components and the trackwork system. Thermal force calculations shall start with the Rail Installation Temperature as the base temperature for the trackwork.

5.11.4.3 Fatigue
Consideration shall be given to the effect of change of stress levels caused by passage of light rail trains over structures. Over the life of the structure, 3 million cycles of maximum stress shall be used in estimating the number of repetitive maximum stress cycles.

5.11.4.4 Uplift
Provision shall be made for adequate attachment of the superstructure to the substructure should any combination of loading produce uplift at any support. Where DL, E, or any other loadings tend to reduce the uplift effect, the corresponding load factors shall be taken as 0.9 for DL, 0.75 for E, and zero for other loadings.

5.11.4.5 Friction
Where applicable, friction shall be considered in the design. Friction forces shall include acceleration and braking forces from the LRT vehicle.

5.11.4.6 LRT Stray Current Provisions
Stray current provisions are detailed in Chapter 19, Stray Current and Corrosion Control.

5.11.4.7 Rail Break
Consideration shall be given to the impact loading from a rail break. The design shall limit the rail gap due to a rail break.

5.12 Support and Underpinning of Existing Structures
Support and underpinning of existing structures shall be determined on a site-specific basis considering the following:

Considerations:

- Type of structure to be underpinned
- Proximity and type of adjacent construction
- Soil properties and tolerable structural deformations
- Methods:
 - Underpinning methods include jacked-down piles, slant-drilled piles, mini-piles, augured shafts, and hand-mined shafts.
Rigid protection wall support systems include diaphragm (slurry) walls, contiguous pile (tangent or secant) walls and closely spaced soldier pile walls.

Other methods of controlling ground movement and minimizing settlements include compaction grouting, chemical grouting and ground freezing.

5.13 Support of Excavation Structures

Support of excavation structures shall generally be the responsibility of the Contractor. The Geotechnical Report information will be made available for the Contractor’s use. When planning for structures requiring excavation support, spatial and physical constraints (adjacent structures, utilities, etc.) shall be considered.
Figure 5-1: Light Rail Vehicle Loading

NOTES:
1. AXLE LOAD IN KIPs.
2. TOTAL LOAD 148,200 LBS/Car
3. THE LRT TRAIN SHALL CONSIST OF EITHER ONE,
 TWO, OR THREE CARS, WHICHEVER PRODUCES THE MAXIMUM
 LOAD FOR THE ELEMENT UNDER CONSIDERATION, APPLIES TO
 BOTH DIRECTIONS.
4. THE LOADS AND DISTANCES DEPICTED ARE WORST CASE SCENARIO.
5. THE VEHICLE IS ASSUMED TO HAVE AN AXLE LOAD/CONFIGURATION
 THAT DOES NOT EXCEED THE STANDARD LOAD.
6.0 STATION DESIGN

6.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the design of Valley Metro LRT stations, transit centers, park and ride sites and other LRT facilities located outside of the right-of-way. Elements discussed in this section include:

- The design of platforms, amenities, and platform access,
- General guidelines for use in the design of bus access (transit centers), kiss-and-ride and park-and-ride facilities, Valley Metro Crew operator facilities,
- Urban Design Guidelines for the Central Phoenix/East Valley (CP/EV) Rail Project (June 2001), and
- Climate, Comfort and Health Report, Central Phoenix/East Valley Light Rail Transit, Professors Harvey Bryan and Jeff Cook, Arizona State University (May 2001)

The general configuration of the stations shall be standardized wherever possible. However, to help establish a neighborhood identity for each station or block of stations, a certain level of design freedom is allowed on the following station elements; canopies, shade structures, guardrails, floor finishes, artwork, station “free areas”, plaza areas, and other related items. Signage, tactile warning strips and maps shall be the same system wide. Any deviation from standardization shall be avoided except when approved by Valley Metro. Valley Metro supports Sustainability Principles in design and encourages designers to incorporate those concepts.

6.2 Codes and Standards

6.2.1 Applicable Codes and Standards

Valley Metro building plan reviews are conducted to help ensure compliance with the Construction Code for local jurisdiction. As an example, the City of Phoenix will review station platform foundations for building safety for those stations located within the City’s street right-of-way (other Cities do not require such review). Additionally, in-street side platforms will receive a “courtesy Site Planning review” by the City of Phoenix. All wayside facilities, such as transit centers, park and ride facilities, and traction power substations, located outside the street right-of-way will require Site Planning and building safety review by the local jurisdiction.

- The latest governing Construction Codes in each City are based on the following:
 - International Fire Code (IFC) with City Amendments
 - International Building Code IBC) with City Amendments
 - International Residential Code (IRC) with City Amendments
 - International Energy Conservation Code with City amendments
 - International Mechanical Code (IMC) with City Amendments
 - International Existing Building Code (IEBC) with City Amendments
Design Criteria Manual
Chapter 6.0 – Station Design

- International Code Council Performance Code with City Amendments
- Arizona State Plumbing Code with supplements
- National Electrical Code (NEC)/NFPA-70 with City Amendments
- ASME A17.1 Safety Code for Elevators and Escalators with City Amendments
- ASME A17.3 Safety Code for Existing Elevators and Escalators with City Amendments
- ASME A18.1 Safety Code for Platform Lifts and Stairway Chairlifts
- City Building Construction Codes - Administrative Provisions
- Engineering Design Criteria (Civil Engineering/Right of Way), Phoenix/Tempe Standard Details (Supplement to the MAG).
- Mesa Standard Details & Specifications Amendment to the Uniform Standard Details & Specifications.
- City of Mesa Engineering Procedures Manual; Engineering and Design Standards.
- NFPA 130 - Standards for Fixed Guideway Transit Systems.
- Americans with Disabilities Act (ADA) Standards for Accessible Design.
- ANSI 117.1, Accessible and Usable Buildings and Facilities.
- Codes of Applicable Jurisdictions.
- CPTED - Crime Prevention Through Environmental Design.
- Urban Design Guidelines for the CP/EV Rail Project

The use of sprinklers at station/transit center shade structures has been waived by the Cities of Phoenix, Tempe and Mesa Fire Departments.

6.2.2 Development Permitting Process

6.2.2.1 Introduction
Construction permits will be required for:

- Construction activity outside the Right-of-Way
- Any Structure (building, parking lot, Stations, etc.) that is impacted by construction
- Back flow preventers and fire lines for buildings.
• Water/Sewer lines impacted by construction will require Maricopa County Environmental Services approval / permits. In addition, Water/Sewer lines within the City of Mesa will also require City of Mesa Right of Way approval.
• Barricades for Traffic Control
• New sign installations and sign relocations

All city agencies affected by the Light Rail project will require permits for the above features. The following agencies must be contacted with respect to the development permitting process.

• City of Phoenix, Development Services Department
• City of Mesa, Development Services Department
• City of Tempe Development Services Department
• City of Glendale, Planning and Building/ Safety Department.
• The development permitting process can be accessed for each City by going to their applicable WEB sites.

6.2.2.2 Pre-Application

The Designer shall schedule a Pre-Application/Pre-Submittal meeting with the corresponding municipal Development Services Department prior to the first submittal. The following information shall be provided to the Approving Authority.

• Preliminary report describing the affected buildings/structures and identifying critical design issues that need to be resolved. The report also needs to address the applicable agency code, and development and permit requirements.
• Preliminary design drawings showing the limits of construction, elevations, design features, preliminary grading and utility plans, etc.
• Design and construction schedule

The purpose of this pre-application meeting is to identify to the agency the impending construction activities and to obtain comments and direction that will facilitate the final design.

In the case of park-and-ride facilities, a pre-application process shall be conducted with the agency to determine if re-zoning is necessary or if other restrictions exist on the site that require early resolution. The particular jurisdiction shall determine the documentation required for this initial meeting.

6.2.2.3 95% Design Submittal

The comments resulting from the Pre-Application/Pre-Submittal meeting shall be reflected in the 95% design submittal. An updated Design Report shall also be required in addition to the Plans and Specifications.

A Development Permit Application shall be completed and submitted in draft form along with the 95% submittal plans in accordance with the Agency’s Permitting requirements. The purpose of
this submittal is to finalize and resolve any issues identified in the Pre-Application meeting so that a final development permit can be completed at the 100% Design Submittal Stage.

6.2.2.4 100% Design Submittal
Based on the comments received by the Agency Development Permitting department, a final construction approval /permit shall be submitted along with the 100% plans and specifications and final Design Report. The Design Report shall address the following topics:

- Civil - Grading and Drainage, Accessible Design
- Utilities
- Architectural/Landscape Concepts/Art Coordination – A summary of each station
- Structural Requirements
- Plumbing Systems
- Electrical
- Lighting Design
- Signage

6.2.2.5 Permit Fees
It is the Designer’s responsibility to identify the permit fee requirement, complete the fee application forms and submit same to Valley Metro for information. All fees shall be paid by the Designer and/or construction contractor.

6.3 Station Geometrics
Dimensional requirements for the station are established in this section.

6.3.1 Configuration
Valley Metro station platforms shall be either center or side platform type. Center platforms are preferred when in the street median; side platforms are preferred for off-street stations or when site constraints prohibit the use of center platforms.

The platform minimum area (excluding vertical circulation elements, structures, furnishings, surge zones, and the platform tactile warning strip) shall accommodate the peak 15-minute entraining and detraining loads at 7 square feet per person. Peak hour design headways shall be factored into area calculations.

6.3.2 Platform Length (Calculated Platform)
The standard “calculated platform length” available for boarding and alighting is 280 feet. The absolute minimum platform boarding length is 260 feet. All lengths less than 280 feet require Valley Metro approval. See Chapter 7, Operations, for design length and provisions for future expansion to accommodate additional load.
6.3.3 **Platform Width**

16 feet-4 inches is the minimum design width for Valley Metro station center platforms. The desirable station platform at terminal stations and high patronage stations is 18 feet wide including the two 24 inch wide tactile warning strips. For side platforms at-grade, the standard width is 14 feet (12 feet minimum) from the edge of platform to the face of station wall or barrier railing, including a 24 inches wide tactile warning strip at the platform boarding area.

6.3.4 **Travel Lanes / Exit Lanes**

For center platform stations, there shall be a minimum of two paths of travel lanes along the entire length of the platform between the platform tactile warning strip and a wall, balustrade, railing, or other vertical elements. For side platform stations, there shall be one path of travel lane along the entire length of the platform between the platform tactile warning strip and a wall, balustrade, railing, or other vertical elements. Valley Metro prefers that all platforms have two entries. An emergency exit leading to an area of refuge is required for stations with only one entry.

The path of travel lanes shall comply with current federal regulations for accessibility as set forth by the ADA Standards for Accessible Design.

The minimum number of exit lanes shall be as required by NFPA 130. The following factors, in addition to the basic factors outlined in Chapter 7, Operations, are the basis for calculating travel and exit lanes.

6.3.4.1 **Patron Lane Requirements**

Physical Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Exit Lanes (^4) (Emergency Conditions)</th>
<th>Travel Lanes (^4) (Day-to-Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane width</td>
<td>22"</td>
<td>28"</td>
</tr>
<tr>
<td>Half lane width</td>
<td>12"</td>
<td>14"</td>
</tr>
<tr>
<td>Lane to platform edge</td>
<td>24"</td>
<td>24"</td>
</tr>
<tr>
<td>Lane to wall/guardrail on Horizontal. Areas (≤ 4% slope)</td>
<td>12"</td>
<td>12" (^5)</td>
</tr>
<tr>
<td>Lane to wall/guardrail on stairs, ramps, and sloping sidewalks (> 4% slope)</td>
<td>0"</td>
<td>0"</td>
</tr>
<tr>
<td>Lane to Column</td>
<td>0"</td>
<td>0"</td>
</tr>
</tbody>
</table>

\(^4\) Based on NFPA 130. See code for other requirements.

\(^5\) In addition, travel lanes cannot occupy 3 feet x 3 feet areas in front of Valley Metro ticket (fare) vending machines (TVMs), patron assistance emergency call boxes (ECBs) and system map cases.
Lane Capacity

Exit Lanes \(^1\) (Emergency Conditions) Travel Lanes (Day-to-Day)

<table>
<thead>
<tr>
<th></th>
<th>Exit Lanes</th>
<th>Travel Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal travel ((\leq 4%))</td>
<td>50 ppm/lane</td>
<td>40 ppm/lane</td>
</tr>
<tr>
<td>Ramps up (> 4%)</td>
<td>35 ppm/lane</td>
<td>30 ppm/lane</td>
</tr>
<tr>
<td>Ramps down (> 4%)</td>
<td>40 ppm/lane</td>
<td>35 ppm/lane</td>
</tr>
<tr>
<td>Up stairs</td>
<td>35 ppm/lane</td>
<td>18 ppm/lane</td>
</tr>
<tr>
<td>Down stairs</td>
<td>40 ppm/lane</td>
<td>22 ppm/lane</td>
</tr>
<tr>
<td>LRV doorways</td>
<td>50 ppm/lane</td>
<td>50 ppm/lane</td>
</tr>
</tbody>
</table>

Patron Speed

<table>
<thead>
<tr>
<th></th>
<th>Horizontal travel ((\leq 4%))</th>
<th>Ramps up (> 4%)</th>
<th>Ramps down (> 4%)</th>
<th>Up stairs</th>
<th>Down stairs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 fpm</td>
<td>200 fpm</td>
<td>200 fpm</td>
<td>50 fpm *</td>
<td>60 fpm *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150 fpm</td>
<td>35 fpm *</td>
</tr>
<tr>
<td>* Vertical component of travel speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.3.5 Vertical Clearances

Any station element that can be targeted for theft or vandalism (e.g., light fixtures, speakers, cameras, etc.) shall be located a minimum of 9 feet-0 inches above traveled pathways unless otherwise approved by Valley Metro. The potential to use benches, trash receptacles, etc., to access these elements should also be considered in locating these elements. In addition, horizontal elements (e.g., canopy framework, sign units, etc.) that could lend themselves to climbing shall also be located 9 feet above the platform floor.

6.4 Station Amenities

6.4.1 Shading and Climate Protection

The category of shade and cooling devices was identified by the Urban Design Guidelines as the single most important design element in the relationship to the success of the Valley Metro system. Horizontal canopies alone cannot provide the necessary shading and climate protection amenity in this climate without the provision of vertical shading structures. Shading from summer low angle sun by vertical shading elements, especially during evening peak periods, is as important as the shading provided by horizontal canopies during the hours of ten o’clock to two o’clock on the design criteria day, August 21st.

Vertical sunscreens shall be semi-transparent to allow visibility along the platform area and should be angled to allow visibility of both trackways by patrons while seated in shade under the canopies. There shall be a minimum of 50 percent shading for the platform during the hours of ten a.m. to two p.m.
Shade canopies or shading structures shall be designed to maintain all Valley Metro vehicle clearances including overhead contact wire systems when present. Horizontal shade canopies shall have reflective index values equal to or greater than 100 as defined in the Climate, Comfort and Health Report (May 2001). Horizontal canopy material shall minimize the radiation of heat onto waiting passengers below.

Shade shall be provided over pedestrian walkways and within the parking areas to shade patrons using the system. Direct, shaded pedestrian connections shall be provided to transit destinations. Use of multi-trunk trees should be encouraged in parking areas to reduce the tendency for blow-down. However, the width of mature double trunks shall not impede adjacent parking or pedestrian areas. As a design goal, 75 percent of the walkway area should be shaded, either by architectural or vegetative shade.

6.4.2 Seating

Provide seating as indicated in the Urban Design Guidelines that complies with ADA Standards for Accessible Design Section 4.32. Benches shall be distributed along the platform. One bench shall be located near each public entry point to the platform. Benches shall be arranged so that they do not interfere with patron circulation or emergency exiting. Seating shall not encroach on queuing and exit way paths.

Benches and/or seating units shall be of designs that will prevent individuals from lying down and/or sleeping. Seating design shall be compliant with ADA Standards for Accessible Design. Some portion of the platform seating shall be designed with backs and full-length armrests to facilitate use by persons with disabilities, and per the Station Finishes Standard Drawings.

6.4.3 Restrooms

Public restrooms are typically not provided at stations or transit centers. However, if the local jurisdiction has a specific request and will maintain such facilities, then public restrooms should be incorporated into the design as a CNPA as approved by Valley Metro. Restrooms complying with ADA Standards for Accessible Design Section 4.22 for use by Valley Metro operators shall be provided at terminal station Crew facilities. The following shall be incorporated into the design of any such facilities, and include:

- One unisex restroom with urinal
- Locks with key card operation per Valley Metro operator specifications
- Direct, secure path to/from track area
- No signage identifying use of building
- Separate (from station) electrical and water metering
- Air conditioning
- Natural and mechanical ventilation
- Low maintenance requirements
6.4.4 System Support Element

The need for system support spaces such as signal cabinets, communication cabinets, house power meter, water meters, water valves and irrigation valves box shall be determined on a site-by-site basis and provided only if space for such equipment has not already been allocated in other locations (such as in nearby train control and communication housings or within train control or traction power sites). When on-site equipment is required at a station, where possible it shall be placed off the station platform. Should system support spaces be required on the platform, they shall be designed in accordance with the Urban Design Guidelines, and integrated with the station design.

6.4.5 Advertising

The Valley Metro Advertising Policy permits sales of vehicle wraps, vehicle floor decals, station wraps and station map case posters. The program is administered through a national outdoor advertising vendor. See http://www.valleymetro.org/metro_business_opportunities/advertising for more information.

The Valley Metro Adopt-A-Station program allows local residents and community groups to connect into light rail through station adoption and maintenance. It is a yearlong commitment and selections are made through an application process. See www.valleymetro.org for more information.

6.4.6 Drinking fountains

One chilled drinking fountain complying with ADA Standards for Accessible Design Section 4.15 shall be provided per station platform.

6.4.7 Trash Receptacles

Per the Station Finishes Standard Drawings, trash receptacles complying with ADA Standards for Accessible Design Section 4.4 and 4.27 shall be provided on the platforms, at fare vending areas, and at bus/shuttle (transit center) areas. Receptacles shall not be provided for the general site, parking, kiss-and-ride areas and/or entry ramps at station platform areas.

A minimum of one receptacle per fare vending area and a maximum of three per platform shall be provided.

Trash receptacles shall be bolted down to avoid removal by unauthorized persons. Department of Homeland Security guidelines specify that trash receptacles for transit platforms be either bomb resistant or wire mesh with a clear plastic bag. The wire mesh basket type shall be used, unless otherwise directed by Valley Metro. Exterior design shall be compatible with station architecture in color and finish.

6.4.8 Hose Bibs

Per the Station Finishes Standard Drawings, standard flush hose bibs (quick-couplers) shall be located to allow full coverage of the platform, fare vending area(s), and circulation elements with a 75-foot hose using fresh water. Other areas shall be reachable by a 150-foot hose with fresh water.
6.4.9 Electrical Convenience Outlets

120V/20 amp GFI single-phase electrical service in weather-proof lockable receptacles shall be located to allow full coverage of the platform and circulation elements with a 75-foot electrical cord, and a 25-foot cord in the fare vending area(s). Provide 240V-1 Phase special purpose outlet with weatherproof lockable cover. Valley Metro plaza and non-station site areas need not have electrical outlets. Mechanical and electrical rooms shall have coverage per code, manufacturers' and designers' recommendations.

6.4.10 Patron Information (Maps)

Provide a patron information center at each station platform. These centers shall contain suitable clips to support posters or other graphic materials for display. They shall also provide back lighting for the display case. The centers shall include the following and comply with ADA Standards for Accessible Design Section 4.27:

- General information panel
- System map
- Transit Schedule
- Neighborhood map (optional)
- Emergency Call Box (ECB) – Can be separate from the system/neighborhood maps

6.4.11 Emergency Call Boxes (ECBs)

Locate one ECB, which are used for direct emergency only communications between a passenger and the Operations Control Center, at each station point of entry. The ECB shall be UL rated and comply with ADA Standards for Accessible Design Section 4.31 on each platform, with a maximum travel distance of 200’ to the nearest ECB from any point on the platform. ECBs shall be located near primary entry point to the platform. ECBs shall be highly visible, signed and accessible to the handicapped.

See Chapter 12, Communications, for additional information.

6.4.12 Closed Circuit Television Cameras (CCTVs)

CCTV cameras shall be located in accordance with CPTED guidelines and a minimum of 9 feet above finish floor elevation of the platform, unless otherwise approved by Valley Metro, to prevent vandalism and theft. Locate CCTV cameras so clearly visible by all and provide coverage of the areas below. Coordinate camera placement and type with Valley Metro’s latest designs.

- Fare vending areas
- Platform area
- Emergency Call Box
- Ancillary spaces
- Approach areas to stations (adjacent intersection)
- Park-and-Ride Lots
- Transit Center Fare Vending Area

See Chapter 12, Communications, for additional information.

6.4.13 Public Address System (PA)/Variable Message Boards (VMBs)

The public address system (speakers) shall provide coverage for all platforms and fare vending areas. The system shall include a means of conveying the same or equivalent information to persons with hearing loss or who are deaf in compliance with ADA Standards for Accessible Design Section 10.3.1 (14) by use of Variable Message Boards. See Chapter 12, Communications, for detailed information.

6.4.14 Art

Provisions for artwork shall be considered integral with the preliminary design phase of the stations and station areas. The placement of artwork shall comply with ADA Standards for Accessible Design Section 4.2, 4.3 and 4.4 and all applicable codes. Valley Metro will include public art consistently with the existing policy for funding art in each municipality.

6.5 Accessibility For Individuals With Disabilities

Federal law regulating accessibility for transit is contained in the ADA Standards for Accessible Design. Valley Metro stations shall meet or exceed the minimum requirements for design and construction defined in the ADA Standards for Accessible Design. Refer to the illustrations contained in the Appendix A to Part 37 of the ADA Standards for Accessible Design for additional information. The design goal is to have 4'-0" clear at the path of travel.

6.6 Lighting

Light level criteria and types of lamps are discussed in Chapter 15, Facilities Electrical. Light fixtures for platform illumination shall be incorporated into the integrated structural elements of the stations and shall serve to illuminate signage as well as the platform edge, seating, fare vending areas and ramps. Walks, rail and pedestrian crossings, driveways and parking areas shall also fall within the scope of station lighting. Lighting system design shall ensure that no objectionable stray light and glare spills over to adjacent neighborhoods. Consideration shall be given to maintenance, bulb replacement, light distribution, and vandalism in the design and execution of the lighting system. Signage or architecture, that requires backlighting and unusual or unique lamps, and complicates spares procurement, shall be avoided.

6.7 Vertical Circulation

All stations require some form of vertical circulation. At-grade platforms shall have sloping sidewalks or ramps as vertical circulation. In general, sloping sidewalks (less than 5 percent slope) are preferred over ramps, and shall be used wherever feasible. Stairs are to be avoided as a primary means of vertical circulation at all applications.
The quantity, width, and distribution of stairs and/or ramps shall be determined per Subsection 6.3.5, Travel Lanes/Exit Lanes. In addition to meeting all applicable code requirements the following shall be incorporated into the design of any required public ramps or stairs.

- Minimum headroom clearance of 9 feet-0 inches measured vertically from the nose of stair
- Tread or ramp surface
- Maximum riser of 6.5 inches
- Minimum tread of 12 inches
- A cleanout trough 3 inches wide, flanking the stair treads and risers

6.8 Station Site

Layout of station access shall accommodate the following modes as necessary, given the location and patronage data for each station: pedestrian, bus, kiss-and-ride, park-and-ride, and rail. For bus interfaces, see the Valley Metro Passenger Facilities Handbook.

6.8.1 Pedestrian Access

Provide direct and safe pedestrian access. This is particularly important since all transit patrons ultimately approach the actual station on foot, regardless of mode of arrival to the station site. See the Urban Design Guidelines for further details. Consideration shall be given for additional sidewalk width for patron safety and ease of access.

- Walkways crossing rail tracks to reach station platform shall be level and maximum of 1/4 inch below the top of rail at the outer edge and between rails, except for a maximum 2-1/2 inch gap on the inner edge of rail to permit passage of wheel flanges. Such crosswalks cannot be provided with either curbs or railing, in compliance with the ADA Standards for Accessible Design.
- Pedestrian linkages shall be designed to allow Level-of-Service (LOS) “A” movements as defined by the Transportation Research Board Highway Capacity Manual (greater than 135 square feet per person or less than 7 persons per 1-foot width of sidewalk per minute).
- Pedestrian paths shall be located based on current or desired pedestrian movements. Sidewalks shall be located where people want to go and be wide enough to accommodate efficient and quick access to the station platforms.
- Access to the station should be a pleasant and enjoyable experience. Development around the station should be transit orientated and be integrated into the pedestrian access to the station.

6.8.2 Bus

Bus connections provide a principal means of connecting to the Valley Metro Rail System at many stations. Station platform locations need to optimize bus to rail transfer and encourage bus use to connect to the stations. Specific criteria include:
• Placement of bus stops near the rail platforms should be at the closest intersection where connection can be easily made optimized bus/rail connections.

• Visibility and ADA access are important factors in inter-modal design.

• Efficient bus circulation on-site and off-site to reduce time spent maneuvering buses from productive routes to platform interfaces.

• Separating bus circulation from conflicting and competing park-and-ride and kiss-and-ride movements.

• For additional bus interfaces, see the Valley Metro Passenger Facilities Handbook.

6.8.3 Bicycles

Provide one rack for four bicycles at street intersections adjoining the station entrance (not on the platforms) and local jurisdiction provided lockers at Park-and-Ride/transit center locations conforming to TSS standards. Criteria for bicycle integration include:

• On-site and off-site identification of improvements needed to accommodate bicycle movements.

• Provide bike paths if possible, or extend existing bike lanes to street intersections adjoining the station entrance.

• Provide bicycle racks in sufficient quantity at near stations where bicycle traffic is expected. Make sure additional right-of-way is included for areas behind the sidewalk.

• Connect with pedestrian pathways and signage to Canal walkways where adjacent to station areas.

• At a minimum 2 sets of bike racks shall be provided at Transit Centers.

• Where local jurisdictions will provide bike lockers, a concrete pad for the lockers will be included.

• At single ended stations, the local jurisdiction may request and pay for an extended platform length to accommodate the placement of two bike racks on the emergency end of the platform.

6.8.4 Kiss-and-Ride

Short term and convenient loading zones for dropping-off or picking-up passengers shall be provided at designated stations, transit centers, park-and-ride facilities, and where space permits. This parking needs to be adjacent to the platform and visible from the station platforms and convenient to station site vehicular access and egress locations.

6.8.5 Park-and-Ride

Automobile parking may be provided in proximity to selected stations. For these stations the following shall be provided:
• Parking for the disabled at priority locations in close and accessible proximity to the bus/rail platforms.
• Vanpool and carpool parking shall comply with city codes and planning/zoning requirements near the bus/rail platforms.
• CCTV monitoring.
• ECB’s.
• Security building and/or operator facility, as directed by Valley Metro
• Bike racks
• Lighting
• For additional bus interfaces, see the Valley Metro Passenger Facilities Handbook.

6.8.5.1 Parking for Individuals with Disabilities
Parking for individuals with disabilities shall be provided per Section A4.6 of the ADA Standards for Accessible Design. The number of parking spaces and type shall be per ADA Standards for Accessible Design and city codes whichever is greater.

6.8.5.2 Emergency Access
Access for emergency response by Fire Department and paramedic equipment and personnel shall be provided at station areas and Park-and-Ride facilities.

6.8.5.3 Site Layout
The layout of the park-and-ride lots, while naturally conforming to available site constraints, shall adhere to the following guidelines:

• Parking aisles with dead ends are undesirable. Provide turning space if necessary.
• Give preferential treatment in locating parking and access routes for high-occupancy vehicles.
• There shall be no entrance or exit collection controls for parking fees. Such fees, if instituted, will be collected by other means.
• Minimize points of conflict between pedestrians and vehicles. Sidewalks within the parking lots are not required, but peripheral walkways are essential for the most probable pedestrian routes.

6.8.5.4 Wheel Stops
Parking lots shall not include wheel stops, except when necessary to protect other elements such as artwork, trees, fences, light standards, etc., where standard curbs cannot serve the purpose.

Wheel stops may be used in conjunction with parking for individuals with disabilities, as necessary by curb/ramp design.
6.8.5.5 **Landscaping**
Landscaping meeting local jurisdiction requirements within the parking lot shall consist of either low ground cover or trees without low limbs to enhance parking lot surveillance and security. See Chapter 14, Landscaping.

6.8.5.6 **Shade Canopies**
Where appropriate, shade canopies shall be provided. The following objectives apply:

- Protect Fare Vending Machines and Stand Alone Validators from excessive heat and UV radiation.
- Designed to be resistant to climbing and graffiti.
- Provide maximum shade coverage of the machine’s display screen.
- Not to interfere with maintenance or fare collection operations of the equipment.
- Must not interfere with the sight visibility of the LRT operator and CCTV camera.
- Not create blind spot to hide behind or for hiding objects.
- Minimize shadowing from station lighting.
- Louver design shall match (or compliment) that of the station.

Valley Metro has standard shade canopy design which shall be used.

6.8.6 **Fencing or Walls**
Provide perimeter fencing or walls around parking lot sites to enhance security. Pedestrian and vehicular gates are not required. The configurations of fencing, screen walls, and security walls shall comply with the local jurisdiction’s zoning codes, parking, and site development requirements.

6.8.7 **Signage**
Signage to give direction and information is one of the most important elements in the smooth functioning of the station. However, whenever possible, the architecture itself should simplify and direct passenger movement. For emergency purposes, the station addressing shall be clearly located with 8” lettering and lighted.

The type and style of signs, graphics, system maps and other directional instructions shall be uniform throughout Valley Metro Projects for easy identification. Station identification signage shall meet the following criteria:

- For each 6 bay cooling screen – 2 station name signs per side
- For each 3 bay cooling screen – 1 station name sign per side
- For each station platform – 1 station artist information sign shall be located near patron information maps.
• Other bay configurations such as 4, 5, 7, and 8 in number – placement depends upon configuration of open bays, tall vine trellises and Variable Message Board locations.

• Where possible place station name sign above an open bay.

• No station name sign shall be placed where the tall vine trellises would obscure their viewing.

Signage shall comply with the requirements of the ADA Standards for Accessible Design Section 4.30, and the MUTCD, where applicable.

6.8.8 Landscaping

Selection of trees for the purpose of shade and cooling on the Station Platforms and Wayside Facilities are based on several criteria, including shade density, form, width and height, maintenance requirements, and amount of water use. The criteria for trees that will be directly on the platform are different than those adjacent to or at the side of the platform and those planted at the Wayside Facilities. An approved list of trees is shown below.

For the “Back of Platform Trees”, any of the “On Platform Trees” may be used. The reverse is not true; only the trees listed in the “On Platform Trees” may be used on the platform.

6.8.8.1 On Platform Trees

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia aneura</td>
<td>Mulga</td>
<td></td>
</tr>
<tr>
<td>Acacia jennerae</td>
<td>Coonavitta Wattle</td>
<td></td>
</tr>
<tr>
<td>Acacia ligulata</td>
<td>Small Coobah</td>
<td></td>
</tr>
<tr>
<td>Chilopsis linearis hybrid</td>
<td>Desert Willow</td>
<td>‘Warren Jones’, ‘Lois Adams’</td>
</tr>
<tr>
<td>Diaspora texanum</td>
<td>Texas Persimmon</td>
<td></td>
</tr>
<tr>
<td>Eysenhardtia orthocarpa</td>
<td>Kidneywood</td>
<td></td>
</tr>
</tbody>
</table>

6.8.8.2 Back of Platform Trees

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinsonia hybrid</td>
<td>Palo Verde</td>
<td>Wayside Facilities</td>
</tr>
<tr>
<td>Phoenix dactylifera</td>
<td>Date Palm</td>
<td>Must be 15’ clear of OCS wires</td>
</tr>
<tr>
<td>Acacia smallii</td>
<td>Sweet Acacia</td>
<td>Wayside Facilities</td>
</tr>
<tr>
<td>Parkinsonia floridum</td>
<td>Blue Palo Verde</td>
<td>Wayside Facilities</td>
</tr>
<tr>
<td>Parkinsonia praecox</td>
<td>Palo Brea</td>
<td>Wayside Facilities</td>
</tr>
<tr>
<td>Prosopis hybrid</td>
<td>Thornless Mesquite</td>
<td>‘AZT’; ‘Phoenix’</td>
</tr>
</tbody>
</table>
6.8.8.3 Station Vines

The following vines are ones that have been approved for use upon the station platforms. Any other vines must be tested for station application and approved by Valley Metro Rail. However, it is desirable that no more than eight different vine species be used in any line segment.

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigonon leptopus</td>
<td>Coral Vine</td>
<td>Special Condition</td>
</tr>
<tr>
<td>Ficus pumila</td>
<td>Creeping Fig</td>
<td>Special Condition</td>
</tr>
<tr>
<td>Hardenbergia comptoniana</td>
<td>Lilac Vine</td>
<td></td>
</tr>
<tr>
<td>Macfadyena unguis-cati</td>
<td>Cat’s Claw Vine</td>
<td></td>
</tr>
<tr>
<td>Mascagnia lilacine</td>
<td>Lavender Orchid Vine</td>
<td></td>
</tr>
<tr>
<td>Mascagnia macroptera</td>
<td>Yellow Orchid Vine</td>
<td></td>
</tr>
<tr>
<td>Merremia aurea ‘(Kellog) O’Donnell’</td>
<td>Yellow Morning Glory</td>
<td></td>
</tr>
<tr>
<td>Rosa banksiae ‘Alton’</td>
<td>Lady Bank’s Rose</td>
<td>Cream or white varieties</td>
</tr>
<tr>
<td>Vigna caracalla</td>
<td>Snail Vine</td>
<td></td>
</tr>
<tr>
<td>Bougainvillea brasiliensis horizontalis</td>
<td>Bougainvillea Brasiliensis</td>
<td>Special Condition</td>
</tr>
<tr>
<td>Passiflora caerulea</td>
<td>Native Passion Vine</td>
<td></td>
</tr>
</tbody>
</table>

Vine selection shall be based on the following criteria:

- Consistent, steady growth habit.
- Create minimal amount of debris.
- If the vine blooms, flowers or seeds must not stain.
- No part of the vine shall create a slippery environment under any weather condition.
- Select vines grown regionally that are readily available.
- No part of the vine shall cause rash or skin irritation.
- No thorns, spines or prickles of any kind.
- Does not require the use of chemicals to sustain health or growth.
- Should not attract bees, whiteflies or other undesirable insects.
• The entire field should be green at all times, intertwining the vines denoted as special condition is encouraged.

Access to vine trellises shall be provided for proper pruning and maintenance.

6.9 Materials

The following basic requirements and criteria have been established for finishes in public areas within the system. While convenience, comfort, and attractiveness are to be considered in the selection and application of these finishes, safety, durability, minimal heat gain, and economy are essential attributes, which must be given priority. Seating shall be provided with minimal heat gain materials. Identifiable hazards shall not be incorporated into the design. See the Urban Design Guidelines for additional requirements.

6.9.1 Safety

6.9.1.1 Fire Resistance and Smoke Generation

Hazards from fire shall be reduced by using finish materials with minimum burning, smoke generation and toxicity characteristics consistent with requirements as noted in governing building and NFPA Codes for flammability. The Valley Metro member Cities have agreed that stations are not “buildings” and do not need to have fire sprinklers or fire extinguishers.

6.9.1.2 Attachment

Hazards from dislodgment due to temperature change, vibration, wind, seismic forces, aging, or other causes shall be reduced by using proper attachments and adequate bond strength.

6.9.1.3 Slip-Resistant Walking Surfaces

Pedestrian safety shall be increased and the presence of individuals with disabilities shall be recognized by using floor materials with slip-resistant qualities complying with ADA Standards for Accessible Design Section 4.5. The following static coefficients of friction as defined in ASTM C1028 shall be provided as a minimum:

<table>
<thead>
<tr>
<th>Coefficient of Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public horizontal surfaces</td>
</tr>
<tr>
<td>Non-public horizontal surfaces, exterior</td>
</tr>
<tr>
<td>Non-public horizontal surfaces, interior</td>
</tr>
<tr>
<td>Tactile warning strips</td>
</tr>
<tr>
<td>Stairs, ramps, sloping sidewalks</td>
</tr>
<tr>
<td>Area around equipment</td>
</tr>
</tbody>
</table>

6.9.1.4 Electrical Characteristics

The platform/safety edge strip shall be electrically insulated. No grounded metallic surface shall be installed within 5'-0" of the edge of the calculated platform edge.
6.9.1.5 **Durability**
Provide materials with excellent wear, strength, and weathering qualities with due regard for both initial and replacement costs. The materials must be colorfast, maintain their good appearance throughout their useful life, and be able to conform to the hot desert environment.

6.9.2 **Ease of Maintenance**

6.9.2.1 **Cleaning**
Facilitate cleaning and reduce cleaning costs by selecting materials that do not soil or stain easily, have surfaces that are easily cleanable in a single operation with the use of standard equipment and cleaning agents, and on which minor soiling is not apparent.

6.9.2.2 **Repair or Replacement**
Maintenance costs shall be minimized by using standardized materials that, if damaged, can be easily repaired or replaced without undue interference with the operation of the system. Spare quantities shall be provided for tile and other applied unit materials in an amount equal to approximately 2 percent of the total material used.

6.9.2.3 **Resistance to Vandalism**
Materials and details shall be provided that do not encourage vandalism and that are difficult to deface, damage or remove.

All surfaces exposed to the public shall be finished in such a manner that the results of casual vandalism can be readily removed with common maintenance techniques. Anti-graffiti coating shall be provided as necessary.

6.9.2.4 **Color**
Colors shall be consistent with recommendations from the Urban Design Guidelines, and the Climate, Comfort and Health Report, or compatible with other system wide criteria.

6.9.2.5 **Unit Size**
Units shall be large enough to reduce the number of joints yet small enough to facilitate replacement if damaged. Monolithic materials may be used if they can be easily repaired without the repair being noticeable.

6.9.2.6 **Joints**
Since joints are a major source of maintenance problems, small, flush joints, limited in number and of the non-absorbent materials, shall be provided. Installations for floors and walls shall have adequate control joints and expansion joints.

6.9.2.7 **Installation Standards**
Selected materials shall be detailed and specified to be installed in accordance with industry standards and manufacturer's printed directions for long life, low maintenance, and compliance with warranty requirements.
6.9.3 List of Potential Finish Materials

This following list shall apply to all areas of public use and contact. The use of items listed as “acceptable” is subject to budget, location and environmental considerations. Color concrete shall be integrally dyed not surface applied or painted. Because of special conditions, items listed as “unacceptable” or “not acceptable” may be approved on a case-by-case basis if they meet the intent of this criteria and Urban Design Guidelines.

6.9.3.1 Platform Paving Materials

- Acceptable – Light Colors
 - Monolithic materials
 - Textured-finish concrete
 - Stamped-pattern concrete
 - Unit materials (large units)
 - Quarry tiles for architectural accent only (non-slip)
 - Paver brick (dense hard)
 - Granite or other natural or manufactured comparable stone
 - Selected artificial stone materials
 - Precast concrete.
- Not Acceptable – Dark Colors
 - Monolithic materials
 - Synthetic resin toppings
 - Standard cement terrazzo
 - Bituminous toppings
 - Unit Materials
 - Resilient tile and sheet products
 - Marble
 - Carpet
 - Wood products

6.9.3.2 Metallic Surfaces and Fixtures

Railings (height and spacing in accordance with applicable codes and standards), posts, columns, fences, trash receptacles, bench supports, and miscellaneous metal. OCS Poles shall be consistent with each City’s Urban Design/Special District color specification.

- Acceptable
 - Stainless steel (areas of high pedestrian use).
 - Color-anodized aluminum (where there is a low degree of pedestrian touch).
- Stainless steel top rail with galvanized steel below.
- Powder coated steel or aluminum (with field touch-up capabilities)

- Not Acceptable
 - Field-painted metals.

6.9.3.3 Canopy Materials

- Acceptable
 - Metal insulated panels
 - Teflon-coated fabric (Class A)
 - Other class A rated tensile fabrics (for canopy/lower skins only)
 - Factory molded panels: fiber re-enforced polyester or fiber reinforced cement (Class A)

- Not Acceptable
 - Glass
 - Uncoated fabric
 - Ordinary plastics
 - Un-insulated metal panels
 - Wood or wood-based products.
7.0 OPERATIONS

7.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the basic operations criteria to be used in the Preliminary Engineering and Final Design Phases of the Valley Metro LRT Project. It encompasses operational objectives and function-based design criteria related to operations and maintenance planning issues.

This chapter should be considered a companion document to Valley Metro’s Rail Operations and Maintenance Plan (O&M Plan). The O&M Plan provides a more detailed discussion of operations and maintenance activities for the LRT system.

7.2 Operational Objectives

LRT System operations shall be designed, managed, operated, and maintained so that it will be attractive to passengers and the community-at-large (inclusive of the non-riding public) to ensure their continued patronage and support. Basic goals for Valley Metro LRT operations are set forth in the Operations & Maintenance Plan, and are described as follows:

- Provide a safe, secure, reliable, and convenient LRT service within the region.
- Provide fully accessible transit (universal design) to the elderly and persons with disabilities.
- Improve access to employment at office/public/school/commercial/industrial sites located along the corridor.
- Meet Valley Metro’s transit standards and performance measures.
- Provide improved service to the stadiums/arenas and for other special events sites within the service area.
- Increase the region's economic potential by improving mobility along the corridor.
- Meet the demands of population and employment growth within the corridor.
- Minimize the operating costs associated with the delivery of transit services.

The safety and well being of passengers, employees, and the neighboring communities shall be the first priority of Valley Metro LRT system design efforts. All other concerns and considerations shall be secondary to safety and security.

Following safety and security, priority shall be given in the design of the Valley Metro LRT system to operational reliability, passenger convenience, and cost-effectiveness, in that order.

7.3 Safety and Security Related Criteria

The first priority of operations is to provide for the safety and well being of passengers, employees, and the neighboring community. This section contains criteria related to promoting safe operations through good design practice during preliminary engineering and final design.
Additional safety and security criteria are provided in Chapter 17, Safety, and Chapter 18, Security, and in Valley Metro’s System Safety and Security Program Plans.

7.3.1 LRT Transportation

7.3.1.1 Control and Supervision Considerations

Regulation and supervision of train operations, and supervisory control of the associated electrical, mechanical, signal and communications subsystems, shall be performed by the operations staff located at the Operations Control Center (OCC). The OCC shall have responsibility for the control, coordination and monitoring of all train movements on main tracks, station operations, yard and yard lead tracks and any main track activities that may affect operations. The OCC shall be capable of at least direct verbal communication with all on-duty train operators and supervisory personnel at all times. Selected security, passenger information, and revenue control activities shall be controlled, coordinated, and monitored at the OCC, as appropriate.

Control systems in the OCC shall be capable of monitoring train operations, power, passenger activity, and other appropriate facilities statuses (intrusion, fire, etc.) under normal operating conditions without requiring direct intervention by the OCC staff. OCC response to service failures and anomalies shall include either automatically or manually initiated changes in system configuration, modifications of system operating strategies, and recovery operations. In all cases, OCC staff shall have the capability of manual OCC control, including overriding or modifying any automatically initiated system response. The design of the LRT system shall specifically include appropriate and practical means of informing passengers of usual and unusual conditions.

As determined by Valley Metro, the secondary OCC shall have the same or similar functionality as the primary OCC.

7.3.1.2 Operational Considerations

LRT operations shall be designed and implemented based on Valley Metro’s operating procedures and practices, to the maximum extent possible.

When confronting a potentially unsafe condition, it shall be assumed for the purposes of design, that LRT operating employees will follow the safest course without regard to matters of service reliability, customer convenience, or cost.

7.3.1.3 Personnel Considerations

The Operating Plan for the Valley Metro LRT system shall include the approach to LRT O&M employee development, including the following personnel requirements.

- All LRT operating employees shall be trained, certified, and regularly recertified with regard to operating procedures and practices directly related to their work.
- All LRT operating employees shall be trained, certified, and regularly recertified with regard to system safety and security.
• All “covered” (i.e., safety sensitive) LRT O&M employees shall be subject to a drug and alcohol testing program in accordance with USDOT regulation 49 CFR Part 655, and Valley Metro's drug and alcohol program.

7.3.2 Light Rail Vehicles

LRVs shall be capable of operating as a train of one, two, or three vehicles in revenue service. Maximum-length LRT trains in revenue service shall not interfere with vehicle traffic on cross streets when the train is at rest during normal operating conditions.

LRVs shall be equipped with a normal braking capability for regular operations at a level as stated in Chapter 8, Vehicle, which shall take into consideration the safety and comfort of passengers standing on board the vehicle.

LRVs shall be equipped with emergency braking capability in which the maximum braking capability of the vehicle is applied in response to emergency conditions. Passenger ride comfort shall not be a consideration with regard to emergency braking.

Each LRV shall employ the use of onboard CCTV cameras providing the LRV operator with the capability to monitor the LRV passenger compartment, exterior sides of the LRV, and the coupler areas. Video from these cameras shall be retrievable, and recorded to an onboard medium having the capacity to store no less than 48 hours worth of data.

The interior passenger compartments of LRVs shall be equipped with emergency intercoms by which passengers can communicate directly with the train operator under such condition. The intercoms will provide clear voice with sufficient volume. The LRV operator shall have the capability to select from the cab console, and view on a cab console video screen, a CCTV image of the location from where the call is initiated in the passenger compartment of the LRV. The interior passenger compartments of LRVs shall be equipped with emergency intercoms by which passengers can communicate directly with the train operator under such condition.

The LRV Operator shall be provided the capability of activating a “silent alarm”. Activation of this alarm shall alert the Operations Control Center of a problem on the train. Each LRV operator cab shall be equipped with the silent alarm, and it shall be conveniently located to the operator while in the normal operating position. The LRV silent alarm shall not cause any indication or warning on board the LRV that the alarm has been activated to OCC.

Additional safety and security-related LRV criteria concerning ventilation, fire/smoke monitoring/detection, audible announcements, sensitive edge door protection, etc., are provided in Chapter 8, Vehicle.

7.3.3 Train Movements

All main tracks shall be considered an exclusive right-of-way operating environment unless specific physical conditions warrant a reduction in classification. The maximum authorized speed for train movements in exclusive right-of-way and semi-exclusive right-of-way operating environments shall not exceed 55 miles per hour, subject to civil limitations. The maximum authorized speed for train movements in a non-exclusive right-of-way operating environment shall not exceed the speed limit of the street that the R/W occupies, subject to civil limitations.
The maximum authorized speed for train movements through stations shall not exceed 20 miles per hour, regardless of operating environment.

Train movements in an exclusive right-of-way operating environment shall be governed by operating schedule, operating rules, and signal indication. Train movements in a semi-exclusive right-of-way operating environment shall be governed by schedule, rules, intersection signals, and signal indications, supplemented by fixed signal indications as necessary in response to special circumstances. Train movements in a non-exclusive right-of-way operating environment shall be governed by schedule, rules, intersection signals, local traffic regulations, and signal indications, supplemented by fixed signal indications as necessary in response to special circumstances.

The perimeter of track areas shall only be fenced in areas of pedestrian traffic where trespassing is a significant concern (except in non-exclusive right-of-way operating environments, where no fencing shall be considered). The limits of bridges and elevated guideway at grade transitions shall be monitored by intrusion detection and CCTV equipment, and supervised at the OCC.

When determined by Valley Metro, encroachment detection shall be designed and installed wherever a freight railroad operates less than 50 feet from the LRT tracks (parallel and at the same grade). If the encroachment detection equipment involves the use of a fence, it shall indicate that the fence separating the rights-of-way has been penetrated and/or has been tilted more than 30 degrees. Upon detection of an intrusion, the signal system shall automatically initiate the most restrictive indication for the affected track segment.

7.3.4 Stations

Facilities shall be configured to provide a train operator arriving at the station with an unobstructed view of the platform and any walkways adjacent to the track.

Platforms shall be sufficiently long enough to accommodate a maximum-length train. In general, stations shall have sufficient area to accommodate peak hour demand. A minimum allowable passenger space allocation of seven (7) square feet per passenger, and the specific peak demand data, shall be considered when sizing passenger stations.

The egress path(s) from platforms shall be sufficient to permit all passengers alighting from a peak train to reliably exit the platform area before the arrival of the next train. High volume stations and terminals shall be subjected to a functional analysis to determine Station Capacity (C_S) relative to the Way Capacity (C_W) of its approaches. The number of platform tracks provided at all high volume passenger stations and terminals shall be sufficient to ensure that the C_S is equal to or greater than the C_W of its approaches.

Stations where passenger queues are anticipated to routinely exceed the available platform area (such as at stadium stations following a game) shall be subjected to a functional analysis of pedestrian and train movements to determine the maximum anticipated queue. Additional queuing areas, temporary train storage tracks, and special crowd control features should be considered at stations to ensure safety and aid crowd management following a special event. Separate boarding platforms and independent queuing systems should be provided at such stations where warranted by the functional analysis.
All stations shall be provided with accessible paths to and from all platforms in compliance with ADA Standards for Accessible Design. The shortest and most heavily traveled path(s) connecting the station with the community shall be fully accessible to individuals with disabilities.

Pedestrian grade crossings shall be combined with vehicle crossings wherever possible. Stations in a non-exclusive right-of-way operating environment shall have no more than two pedestrian grade crossings.

Stations and park-and-ride lots shall be designed to allow camera and site views of patron areas for routine surveillance by security personnel. Stations and park-and-ride lots shall be equipped with call-for-aid boxes or emergency telephones, by which passengers can communicate directly with the OCC.

7.3.5 Grade Crossings

Grade crossings in an exclusive right-of-way operating environment shall be equipped with automatic gate protection of the tracks, which shall have little or no effect on train performance. Grade crossings may be equipped with automatic gates or intersection signals, which shall also govern LRT movements.

7.3.6 Regulatory Considerations

The LRT system shall be designed, constructed, and operated in conformance with all applicable federal and state laws, rules, and regulations.

7.4 Reliability Related Criteria

The second priority of operations is to provide a reliable, integrated network of transit services for the convenience of its passengers. This section contains criteria related to ensuring that operational reliability shall be sustained through good design practice during preliminary engineering and final design.

7.4.1 Service Reliability Tolerances

LRT operations shall be planned and implemented assuming an on-time performance of at least 95 percent during peak service periods, and 97 percent during base service periods. Non-Force Majeure equipment failure requiring removal of an LRT before the end of its revenue service run shall not exceed 0.1 percent at all times without impacting the service reliability index. As determined by Valley Metro, LRVs not meeting the minimums for cleanliness and operability may not be considered “good” runs for the sake of service reliability calculations until such time the condition is corrected.

At the discretion of Valley Metro, service reliability requirements at the beginning of revenue service for a new line or extension may be relaxed to preempt any service degradation resulting from the new operation.
7.4.2 Operational Considerations

7.4.2.1 LRT Transportation
Operational contingency plans shall be prepared early in the design process to satisfy system design requirements described herein. These plans will be implemented in the event of abnormal operating conditions, and shall take into account a reasonably comprehensive cross section of disrupted service scenarios. Operational contingency plans shall be based on the premise of providing an immediate, preprogrammed response to a disrupted service scenario, with the capability of full field deployment, in no more than 30 minutes. Such contingency plans shall include LRT operations supplemented by buses, such as a bus bridge, where appropriate.

7.4.2.2 Intermodal Connections
Intermodal connections, such as rail to bus transfers or vice-versa, shall be protected to the maximum extent possible in the event of an abnormal operating condition. Such procedures shall be accounted for in operational contingency planning.

7.4.2.3 Light Rail Vehicles
In order to expedite boarding and alighting, LRVs shall be designed to accommodate level boarding with the station platform for all passengers. LRVs shall have a minimum effective door width of 48 inches. The interior of the car shall be designed to promote good passenger circulation and foster balanced distribution of passenger loadings under comfort and design passenger loading conditions.

7.4.2.4 Stations and Fare Collection
Station platforms shall be designed to accommodate level boarding with the LRV floor to expedite loading. In order to expedite passenger boarding and alighting, fare collection shall rely on a Proof-of-Payment (POP) system. Sales of fare instruments shall not be conducted on board LRVs. Sales shall primarily be conducted through fare vending machines located at the entrances of the station platforms in designated non-fare paid areas. High value tickets, multiple ride tickets, monthly passes, and credit card sales will be possible. Verification of fare payment will be performed by roving fare inspectors performing random checks on board LRVs and in the designated fare-paid areas of the stations. All terminal stations shall be equipped with secured space(s) accommodating employee toilet facilities, light cleaning supplies, and trash storage receptacles.

7.4.2.5 Main Tracks
A minimum of one track per direction shall be provided to the maximum extent possible. Single-track segments, in which movements in both directions share a common track under normal operating conditions, shall be avoided to the maximum extent possible. The length of single-track segments, if necessary, shall be as short as possible. Special work provided at either end of a single-track segment shall be designed to permit movements equal to the normal speed of adjoining track segments, to the maximum extent possible. The number and arrangement of main tracks shall be sufficient to support the maintenance of service and recovery during abnormal operating conditions, as operation requirements dictate.
7.4.2.6 Systems
Signals, communications and traction power systems shall have sufficient redundancies and reserve capacities to accommodate abnormal operating conditions anticipated in the operational contingency plan, as operations requirements dictate.

7.4.3 Preventive Maintenance Measures

7.4.3.1 Vehicle Maintenance
The LRV maintenance plan shall be based on a program of periodic preventive maintenance and the manufacturer’s recommended maintenance program that will satisfy requirements of the warranty. The vehicle maintenance plan shall provide for scheduled light and heavy maintenance, and shall be based primarily on vehicle mileage.

7.4.3.2 Facilities and System Maintenance
The Valley Metro Maintenance Of Way (MOW) Plan shall be based on a program of periodic preventive maintenance to proactively address the needs of all systems and fixed facilities. The plan shall provide scheduled service and inspection intervals for systems elements such as signals, OCC, radio, communications, and fare collection. The plan shall also provide scheduled service and inspection intervals for fixed facilities such as stations, trackwork, substations, overhead catenary, and structures. The plan shall include special service and inspections required by extreme weather such as excessive heat.

7.4.3.3 Computerized Maintenance Management System
A Computerized Maintenance Management System (CMMS) shall be implemented to support all preventive maintenance scheduling throughout the LRT System. All scheduled and unscheduled maintenance, inventory control, and maintenance records management shall be processed through the use of this system. The system shall include a common database accessible by client computers, and allow end users to run custom-designed reports.

7.4.4 Preparatory Measures

7.4.4.1 Light Rail Vehicles
The LRV fleet requirements shall include a minimum spare factor of 15 percent above the peak car requirement of scheduled service for maintenance spares.

LRVs shall be equipped with high visibility, variable signage at the front, rear, sides, and interior of the vehicle. Such signage shall clearly and continuously indicate the route, destination, and service pattern of the train movement by a combination of text and color-coding. Messages communicated to passengers via such signage shall also be communicated to passengers audibly through the use of on-board announcements, as required by the Americans with Disabilities Act.

7.4.4.2 Stations
Stations shall be equipped with variable message signs adjacent to each track that shall be used to provide service and emergency information to waiting passengers. Messages communicated to passengers via such signage shall also be communicated to passengers audibly through the use of station announcements, as required by the Americans with Disabilities Act.
7.4.4.3 **Main Tracks**
Main tracks shall be designed to accommodate the normal speed of the applicable category of right-of-way to the maximum extent possible.

Two main tracks shall be provided for LRT operations to the maximum extent possible. Where more than one main track is provided, the normal direction of traffic assigned to each track shall be based on a “right-hand running” convention. However, trains shall be capable of running on any main track in either direction.

Where only a single main track can be provided, the length of a single-track segment shall be held to an absolute minimum and not exceed the distance necessary to reliably sustain scheduled service during the peak period. The design shall also consider growth in ridership and future decreasing headways during the peak period in determining the length of the single track segment. The actual acceptable lengths and locations for single main track segments shall be based on a reliable time-distance (string line) analysis of scheduled train movements. The following formula can be used to estimate the optimal maximum length of single-track segments:

\[
\frac{\text{Average Operating Speed}}{60 \text{ minutes}} \times \frac{\text{Peak Headway}}{2} \times 0.8 = \text{Maximum Length of Single Track Segments}
\]

Single track running times shall be determined by measuring the running time of the train from the time that the entry interlocking becomes unavailable until the exit interlocking becomes available for subsequent train movements.

Turnouts at both ends of a single-track segment shall be capable of sustaining operating speeds equal to the normal speed of the adjoining track segments, to the maximum extent possible.

7.4.4.4 **Junctions**
Junctions shall be located, designed, and operated to provide reliable and efficient access between the main tracks of two or more LRT lines. Signals and other appliances at junctions shall be remotely operated from the OCC, and have the capability to be locally overridden and manually operated onsite. Special trackwork provided at a junction shall be designed to permit movements equal to the normal speed of adjoining line segments to the maximum extent possible.

7.4.4.5 **Terminals**
Reversing train direction on main tracks in active revenue service shall be permitted under normal operating conditions.

A terminal facility with double crossovers to the front and rear of the platform is preferred, allowing the facility to function as a stub or pullback terminal. If two double crossovers are not feasible, a pullback terminal with a double crossover located to the rear of the platform is preferable to a stub terminal. Simple stub terminals with only one double crossover to the front of the platform shall be avoided under normal operating conditions, except at the ends of lines or where there are special operational and schedule considerations.
The functional utility of a terminal shall be determined on a case-by-case basis through an operational analysis of the operating schedule at the terminal, the Way Capacity of its associated interlockings and tail tracks, and the Station Capacity of its associated platform. As a general guideline, at least two tail tracks shall be provided wherever a six-minute headway reverses direction. In the case of a stub terminal at the end of a line, platform tracks generally may function as tail tracks.

7.4.4.6 Crossovers

Crossover placement and spacing for a mainline configuration of two tracks should be established dependent on reliably sustaining scheduled service on a single-track segment during the base service period. The design shall also consider growth in ridership and future decreasing headways during the base period in determining crossover placement and spacing. The actual spacing and location of crossovers shall be based on a reliable time-distance (string line) analysis of scheduled train movements. The following formula can be used to estimate the optimal maximum distance between crossovers:

\[
\text{Average Operating Speed} \times \frac{\text{Base Headway}}{60 \text{ minutes}} \times \frac{0.8}{2} = \text{Optimal Distance between Crossovers}
\]

Single track run times between crossovers shall be determined by measuring the running time of the train from the time that the entry interlocking becomes unavailable until the time the exit interlocking becomes available for subsequent train movements. This measurement shall also be determined for reverse running on both tracks, with the slowest running times measured against the base service period headway discussed above.

Crossovers shall be located as close as possible to a station platform and at the near side of a terminal station platform.

7.4.4.7 Yards and Auxiliary Tracks

To the maximum extent possible, yard movements and access to and from storage tracks shall not conflict with revenue train movements. Yard access shall be configured such that trains pulling into and out of revenue service are presented with at least two possible movement paths to/from each line that the yard borders. A buffer area shall be provided at the yard entrances to the main tracks where a maximum-length train may dwell and vehicles can be added and cut so that such activities will not interfere with main track operations.

All daily storage of LRVs should be provided in a yard ideally situated to minimize deadhead time of revenue service LRVs. In the event that more than one yard is required to minimize operating costs, the smallest number of independent yard sites should be provided. The ideal number of yard sites for a particular system shall be determined by an operational analysis of LRT movements, balancing the desire to minimize deadhead mileage against the cost of supporting additional facilities.

LRV yard storage tracks shall be located and distributed such that all train lengths scheduled in normal revenue service may be stored without uncoupling any trains. Yards of several shorter storage tracks are preferable to those of few very long tracks. Storage capacities of individual tracks shall be multiples of maximum-length trains. A given yard should have a capacity equal to
130 percent of the LRV fleet to be stored at each particular location under normal operating conditions. Curved storage tracks shall be avoided, and storage tracks shall be accessible from either end, to the maximum extent possible.

Train operator reporting facilities shall be provided as close as possible to the storage yards. Walkways shall be provided between storage tracks to facilitate access by personnel and the movement of material, as required.

7.4.4.8 Shop and Vehicle Maintenance Tracks

Shop facilities shall be designed and operated to perform the required LRT vehicle diagnostics/maintenance functions necessary to provide safe and reliable LRT service. Shop facilities shall be located, where possible, to provide easy access to a yard storage location and good mainline connections. Maintenance facilities should be directly accessible from storage yards without crossing main tracks. LRV maintenance facilities shall have holding tracks of capacity equal to or greater than the shop's capacity.

7.4.5 Traction Power Systems

For the purpose of satisfying operational-related reliability criteria of this section, traction power systems shall be designed with sufficient capacity, redundancy, and reliability to support peak period operations under normal and contingency operating conditions.

7.5 Passenger Convenience Related Criteria

The third priority of operations is passenger convenience and comfort. This section contains criteria related to ensuring that convenient and efficient operations will be maintained through good design practice during preliminary engineering and final design.

7.5.1 Operational Planning Considerations

7.5.1.1 LRT Operating Speeds

The maximum authorized speed for LRVs in exclusive right-of-way and semi-exclusive right-of-way operating environments shall not exceed 65 miles per hour.

The maximum authorized speed for LRVs in a non-exclusive right-of-way operating environment shall not exceed the speed limit of the street that the R/W occupies.

7.5.1.2 LRT Service Configuration

LRT service shall be configured in routes designed to provide a one-seat ride for the greatest number of passengers, based on passenger demand. The overall number of discrete LRT routes shall be kept to a minimum.

The stopping patterns for a particular LRT route may vary as deemed appropriate in response to passenger demand. Variations in stopping patterns, however, shall be kept to a minimum for the convenience of the traveling public. Such variations in stopping patterns may be employed, as needed, to enhance travel times and/or operational effectiveness. They may include:

- Terminating selective movements at a station short of the regular terminus for a particular route (short-turning service);
- Operating selective movements past a series of stations without stopping (zone express service), and,
- Providing branch-line service as a discreet operation during selective service periods connecting with a through service (shuttle service).

Service patterns in which trains with common termini alternatively stop at every other station (skip-stop service) should be avoided unless warranted by limitations in line capacity. Choices in service patterns should be guided by the fact that service frequency at a given station has a greater influence on patronage than travel time.

7.5.1.3 LRT Level of Service

LRT service shall be sufficient to meet passenger demand with an appropriate combination of headways and train lengths.

For the purposes of operational planning, LRT service capacity shall accommodate peak demand, and such demand shall not exceed a comfort load standard of 156 passengers per LRV. During special events, a design load standard of 186 passengers per LRV shall be acceptable. The desirable LRV passenger-loading standard during base service periods shall be equal to a full-seated passenger load.

7.5.1.4 Intermodal Connections

The following objectives govern the development of the plans for intermodal connections:

- Provide transit routes and services that are responsive to identified passenger travel patterns.
- Minimize overall travel time for most passengers.
- Simplify the overall route structure.
- Avoid unnecessary disruptions of present routes and services without clearly demonstrated benefits.
- Maintain consistency with Valley Metro or regional standards.
- Improve the overall operating efficiency of the Valley Metro regional system.

Overall, LRT is intended to be the predominant mode of transit in the corridor it serves. Bus routes should be designed, where appropriate, to function as complementary and coordinated feeders and distributors for the line-haul service provided by the LRT. The process of coordinating an existing bus system with LRT service should be carefully undertaken on a station-by-station, route-by-route basis, balancing the concerns for extending travel times for through passengers with the need to minimize the walking distance and wait encountered by transferees.

General Guidelines

Bus and rail transit routes and services should be designed to maximize Valley Metro system ridership, consistent with the following general guidelines:
• Overall travel times and travel opportunities should be maintained or improved for the majority of passengers using any route changed to accommodate LRT service.

• Overall, bus and rail operating costs should be minimized.

7.5.2 Light Rail Vehicles

LRV performance shall provide an optimized combination of acceleration, deceleration, and maximum operating speed sufficient to provide passengers with a high degree of ride comfort and the fastest possible travel time.

7.5.3 Stations

Station platforms shall be designed to accommodate level boarding with LRV trains to expedite passenger boarding and alighting, as well to accommodate the mandates of the ADA Standards for Accessible Design. Stations shall have a series of seating and waiting areas with canopies and trees for shading.

Beyond the ends of the platforms, there shall be controlled walkways across the track. In general, this control shall be by means of pedestrian crossing traffic signals, coordinated with operating rules for the LRVs. Additional control measures shall be considered if there is a perception of unique circumstances.

All stations shall be designed with ramp access in accordance with the ADA Standards for Accessible Design. Platforms shall be set 14 inches above the top of the rails, the same level as the floor in the center portion of the light rail vehicles. Most stations will have a single center platform situated between the two tracks. Some stations will have two side platforms, one serving each track.

Fare collection equipment shall be situated in designated non-fare paid areas at station entrances that correspond with an entering passenger’s most direct path to boarding LRVs.

An effective path for buses shall be provided through a station environment, where appropriate, that is direct and will not add significant travel time for through bus passengers.

Direct access to the LRT platforms by other transit modes shall be prioritized based on the passenger carrying capacity of a particular mode and the length of time a vehicle will remain in the station environment. As such, the most direct and proximate access to the LRT platform should be afforded to bus transit, followed by paratransit (allowing for ADA Standards for Accessible Design considerations), kiss-and-ride passengers, taxicabs, and park-and-ride passengers.

7.6 Operational Cost-Effectiveness

The fourth priority of operations is cost-effectiveness. This section contains criteria related to ensuring that operating and capital costs shall be minimized through good design practice during preliminary engineering and final design.
7.6.1 Operational Planning Considerations

7.6.1.1 Service Effectiveness
LRT train lengths shall be adjusted as needed to minimize operating expense, consistent with LRT loading standards, passenger demand, and O&M contractual obligations, as required.

The location and number of LRV storage areas and train operator report locations shall be optimized to minimize operating expense.

All aspects of operations, including service planning, equipment, and facilities, shall be designed to accommodate maximum passenger trip volumes.

7.6.1.2 Operating Expense
LRT operating plans, services, and contracts shall be designed to minimize operating costs while maximizing service effectiveness.

Opportunities for contracting operations or support services to private sector contractors will be considered wherever cost-effective. Decisions regarding the use of outside contractors shall be based on several factors, including:

- Frequency of need;
- Amount and cost of special equipment;
- The need for specialized skills and training;
- The cost of self-performing the service vs. the cost of subcontracting the service;
- The availability of the service from the private sector; and
- The speed with which the service is needed to meet operational goals.

7.6.1.3 Capital Expense
LRT operating plans and services shall be designed to minimize future capital costs.

7.6.2 Maintenance Planning Considerations

7.6.2.1 Maintenance Effectiveness
All facilities shall be designed to minimize routine maintenance requirements. All facilities shall be constructed of durable, easily maintained materials. Particular consideration shall be given to the prevention of vandalism and to ease the rapid repair of any vandalism that may occur.

7.6.2.2 Operating Expense
LRT maintenance plans and facilities shall be designed to minimize operating costs.

Opportunities for contracting equipment and way maintenance, as well as support services, to private sector contractors shall be considered wherever cost-effective. Decisions regarding the use of outside contractors shall be based on several factors, including:

- Frequency of need;
- Amount and cost of special equipment;
• The need for specialized skills and training;
• The cost of self-performing the service vs. the cost of subcontracting the service;
• The availability of the service from the private sector; and
• The speed with which the service meets operational goals.

7.6.2.3 **Capital Expense**

LRT maintenance plans and facilities shall be designed to minimize future capital costs and the frequency of major rehabilitation and repair.
8.0 VEHICLE

The purpose of this chapter is to establish the standards and design requirements of the basic functional, operational, and physical characteristics of the low-floor light rail vehicle (LFLRV). It is intended to provide sufficient information to allow design development during the Preliminary Engineering phase, and develop estimates of capital, operating, and maintenance costs.

Definitions:

- Vehicle: The smallest passenger carrying unit that can operate independently.
- Train: A set of one or more vehicles coupled together and operated as a single unit or consist.

All vehicles provided for the initial and subsequent fleets shall be essentially identical and shall operate interchangeably in any train and on any part of the System.

8.1 Trackwork Characteristics

The following provides the basic track limitations under which the vehicle or train must be able to operate in revenue passenger service. For further details of current trackwork characteristics see Chapter 2, Track Alignment and Clearance.

- Minimum horizontal curve radius 82 feet
- Minimum vertical curve radius, crest 820 feet
- Minimum vertical curve radius, sag 1,150 feet
- Simultaneous vertical and horizontal curve radii 82 feet horizontal
 820 feet vertical
- Maximum horizontal distance between track centerline and platform 56.0 inches,
 + 0.00 / - 0.125 inches
- Vertical height from top of rail to top of platform edge 14.0 inches,
 + 0.00 in / - 0.125 in
- Rail types 115 RE, RI-53N, Block Rail
- Rail cant, except for special trackwork sections 1:40
- Minimum frog number for vehicle design 4
- Maximum track superelevation for vehicle design 6.0 in
- Maximum unbalanced superelevation 3.0 in
- Maximum gradient for vehicle design Normal operation 7%
8.2 **Power System Characteristics**

The following provides the basic overhead catenary / power system limitations under which the vehicle or train will operate in revenue passenger service. For further details see Chapter 10, Traction Power.

- Maximum sustained supply voltage 900 VDC
- Nominal supply voltage 750 VDC
- Minimum sustained supply voltage 525 VDC
- Maximum rail to ground voltage 50 VDC
- Pantograph operating height above top of rail, with any vehicle loading from AW0 to AW4, and new to fully worn wheels 23.0 ft maximum, 13.0 ft minimum
- OCS Stagger Refer to Section 10, Traction Power
- Collector head overall width 77.95 in with horizontal collector surface of 42.0 in minimum
- Collector carbon length 42.0 in minimum

8.3 **General Vehicle Characteristics**

8.3.1 **General**

The vehicle shall be air conditioned, double articulated and have, as a minimum, two main passenger compartments joined to form one single operating unit with a minimum 70 percent low-floor to allow level boarding from low level station platforms.

The vehicle shall be inter-operable with the vehicles in Valley Metro’s existing fleet provided by Kinkisharyo, LLC. Inter-operability shall include the ability to operate both types of vehicle in a single train, and the compatibility of all system functionalities. The General Arrangement of Valley Metro’s existing LRT vehicle is shown in Figures 8-1 and 8-2.

Eight (8) bi-parting passenger doors shall be located within the low-floor area, four (4) per side directly opposite the doors on the other side. Other designs may be considered, if sufficient passenger flow can be achieved to permit ease of passenger movement and minimized passenger contact. Additional specific door requirements are defined in Section 8.3.4.

Compliance with ADA Standards for Accessible Design is required for all aspects of the vehicle design and construction.

The fire safety design and construction of the vehicle shall be in compliance with all current applicable vehicle-related requirements of NFPA 130, current edition.
There shall be no less than 66 passenger seats (including all tip-ups), with a preference for additional seating. High level seats shall not face each other in the main passenger compartments; seats may face each other in the low floor area and in the articulation unit. All passenger seating shall be suitable for use by a US 5th percentile female and 95th percentile male. In particular, the knees of a 95th percentile male shall not be in contact with the seat back of the seat in front of him when seated. To ensure this, the distance from the buttocks of the seated passenger to the seat back in front of him shall not be less than 28 inches.

Each vehicle shall provide accommodations for at least four wheelchairs and four bicycles.

The heating, ventilation, air conditioning (HVAC) system shall be high performance / energy efficient and suitable for the Valley Metro LRT system area conditions. Additional specific HVAC system performance requirements are defined in Section 8.7.1.

The vehicle shall be bi-directional with fully equipped cabs at each end. Each cab end shall be equipped with energy absorbing bumpers and retractable, energy absorbing automatic couplers as detailed in Sections 8.3.9 and 8.3.10. The cab end structures shall also be capable of absorbing collision energy in event of a major collision as per Section 8.3.11.

Communication systems shall include voice and data radio, train-to-wayside radio communications, automatic passenger counters, public address, variable message destination and information signs, automatic pre-recorded announcements, external rear and front facing video recording, interior passenger area video recording, cab-to-cab intercom and a passenger emergency intercom as per Section 8.3.12.

The vehicle design shall include and utilize in its construction as much “service-proven” and “off-the-shelf” technology as possible.

The design service life of the vehicle shall be no less than 30 years.

The operator's cab shall be ergonomically designed to address clear line of sights, easy access to all controls, and seating shall be designed to minimize fatigue, shock impact, and over extension of arms and legs.

The vehicle shall be of a modern and attractive design in harmony with existing Valley Metro LRT System vehicles.

8.3.2 Operating Characteristics

The vehicle shall be capable of full performance multiple-unit operation in consists of up to three (3) vehicles during normal daily operations. Under emergency conditions, a consist of up to six (6) vehicles, 3 of which may be inoperable and without power or only partially operational, shall be capable of operating under reduced performance.

8.3.3 Critical Vehicle Dimensions

The following are the nominal limiting major dimensions for the Valley Metro LRT light rail vehicle:
- Length of three car train (over bumpers, couplers folded): **Max**
 - 281.0 ft
- Distance between bumper of first car and the trailing edge of the rearmost door on the third car of a three car train:
 - Less than or equal to 260.0 ft. All doors must be fully open on the platform with the vehicle bumper no more than 6 in past the end of the platform. This distance must also include an allowance of at least 1.0 ft to account for vehicle stopping accuracy.
- Overall width of vehicle: **Max**
 - 105.5 in
- Width of vehicle at passenger door thresholds: **Max**
 - 107.7 in
- Clear width of passenger side doors: **Max**
 - 52.0 in
- Clear height of passenger side doors: **Max**
 - 79.9 in preferred
- Height of low floor area at vehicle entrance above top of rail: **Max**
 - As low as possible, not to exceed 15.75 in
- Maximum height of low floor area above top of rail: **Max**
 - As low as possible, not to exceed 39 in
- Height of high floor above top of rail: **Max**
 - 14.0 in nominal
- Under-floor clearance: **Max**
 - 7.87 in minimum (vehicle edge), 5.12 in minimum (vehicle center)
 - 146.65 +/- 0.39 in
- Height of vehicle from top of rail to top of pantograph (locked in down position): **Max**
 - 80.0 in minimum
- Interior height: center-line floor to ceiling: **Max**
 - 2 in minimum above top of rail
- Truck / vehicle clearance (excepting wheels and track brake), normal operating conditions of maximum wheel wear and primary suspension settlement: **Max**
 - 1.25 in minimum above top of rail
8.0 – Vehicle

Min Max

- Track gauge 4 ft 8.5 in [56.5 in]
- Wheel gauge 56.00 in
- Wheel profile As per Figure 8-3
- Anticlimber height As per Section 8.3.8
- Shock absorbing bumper height: From 14 to 20 in above top of rail
- Coupler height: As per Section 8.3.10
- Maximum vehicle roll angle 3.5 degrees
- Dynamic swept envelope: As per Section 8.4

8.3.4 Passenger Doors

It shall be possible to completely unload a vehicle loaded at AW2 in 25 seconds or less through the doors on one side only, under the assumption that one passenger per 1.5 seconds can be unloaded through each 25-inch unit of clear width at each doorway. It shall not be possible to entrap fingers, hands or clothing between door panels and adjacent fixed sections while doors are opening or closing.

All passenger doors shall be partially glazed and of the two-panel, sliding-plug type.

The door panels shall be flush with the car body when closed. Closed door panels shall seal to prevent the ingress of water during the car wash operation, or proceeding at maximum speed in revenue service under the worst case climatic conditions.

The door control system shall be trainlined so that the Operator can open, close, or enable all left side, all right side or all passenger doors in the consist independently from the operating cab. All door control circuits for one side of the car shall be separate and distinct from those for the other side of the car.

All door controls and pushbutton illumination circuits shall be electrically interlocked with the no-motion circuit, which shall permit the doors to be electrically opened only when vehicle no-motion is detected.

All vehicle doors shall have an obstruction-sensing/door reopening feature. Doors shall be automatically mechanically locked when fully closed. All vehicle doors shall have an emergency release mechanism on both the interior and exterior of the vehicle to unlock and open the door panels manually without vehicle power and without the use of a key or similar device.

8.3.5 Wheel Dimensions

Vehicle wheel diameters shall be between 24.8 inches to 28 inches in diameter. The wheels shall be the same diameter on all axles of the vehicle and shall be interchangeable.
8.3.6 **Truck Dimensions**

The vehicle truck wheelbase shall be within the range of 67 to 75 in.

The lead truck center to first articulation joint center distance shall be between 27 ft. 11 in. and 32 ft. 6 in., depending on vehicle design. Variations from these dimensions may be accepted if inter-operability with Valley Metro's LRT vehicles is achieved.

8.3.7 **Wheel Profile**

The vehicle wheel profile shall be in accordance with Kinkisharyo drawing 3-UC02270 as follows in Figure 8-3.

8.3.8 **Anticlimbers**

The centerline of the vehicle’s anticlimbers shall be 31.3 inches above top of rail so as to engage the anticlimbers on existing vehicles.

8.3.9 **Bumpers**

The bumper energy absorbing assembly shall prevent any vehicle structural damage for collision speeds up to 5 mph between two AW2-loaded vehicles. The anticlimbers shall be so designed that two out of three anticlimber ribs, under a vertical load of +/- 40,000 lbs, combined with a 90,000 lb. longitudinal load uniformly applied, shall remain fully intact and cause no permanent deformation of the carbody structure.

8.3.10 **Couplers**

Automatic couplers shall be provided on both ends of each vehicle. The mechanical coupler and all electrical trainline connections shall be compatible with existing Dellner couplers on Valley Metro’s existing LRT vehicles, including high speed data lines. The mechanical coupler centerline shall be located 18.5 inches above top of rail.

The following requirements shall apply.

- A positive lock shall assure that the coupler, once engaged, cannot release without prior, on-board release of this lock.
- All required electrical connections shall be accomplished automatically during a mechanical coupling and shall be disconnected automatically during a mechanical uncoupling. Upon uncoupling, all required electrical shall be protected by automatically deployed weather- and moisture-resistant covers.

8.3.11 **Controlled Collapse Cab**

The operator’s cab structure shall collapse in a controlled manner to absorb excess collision energy not absorbed by bumpers and/or couplers.

The cab shall be designed to absorb at least 285,000 ft-lb of energy by means of a controlled collapse in a distance of between 20 to 28 inches.
8.3.12 Vehicle Management System

Each vehicle shall be provided with an integrated Vehicle Management System (VMS) that includes the following elements which shall be compatible with vehicle based systems currently supplied by the vehicle manufacturer on existing Valley Metro LRT vehicles:

- Voice Radio System
- GPS/AVL System
- Vehicle Information Controller
- Exterior forward facing and platform monitoring Video Cameras / Recorder
- Wireless LAN System
- Interior passenger monitoring Video Cameras / Recorder
- Silent and standard alarms
- Data Radio equipment/functions shall be compatible with Valley Metro’s WiMax System, as specified in Chapter 12, Communications.

Control and monitoring of the VMS system shall only be available from the active cab of a train. The VMS system will control all the sub-systems listed below and provide the functionality identified.

The VMS system via the Vehicle Information Controller shall directly control the following on board vehicle subsystems:

- PA System
- Passenger Information Displays
- Auto-Announcer
- Destination Displays
- Automatic Flange Lubrication System

In addition, the VMS system shall interface with the vehicle Maintenance and Diagnostic System (MDS).

All VMS controlled systems shall be trainlined to allow control by the active VMS system in all vehicles of the train.

Provisions shall also be made for the future installation of a multi-media display and advertising system such as AGATE e-Media or similar.

Automatic passenger counting equipment compatible with existing DILAX APC equipment shall be also provided.

Control of turnouts from each cab shall also be provided using Train to Wayside Control (TWC) equipment equivalent to that currently supplied by Hanning and Kahl.
8.4 Vehicle Dynamic Swept Envelopes

In order to maximize the flexibility of the system, a composite vehicle swept envelope has been developed which incorporates the known critical dimensions and characteristics of three recently built 70% low floor, double articulated, light rail vehicles, namely:

- NJT Hudson-Bergen / Newark City Subway LRVs built by Kinkisharyo
- Hiawatha Minneapolis-St. Paul LRVs built by Bombardier
- S70 93 foot long version LRVs, subsequently built for Charlotte by Siemens

The resulting swept envelope for each of the three vehicle types has then been individually calculated on both tangent, level track and on a variety of curves with various super-elevations on both ballasted and non-ballasted track. The worst case swept point out of these calculations is then identified for each permutation and included in the final combined worst case swept envelope tables presented in this section.

When the track clearance envelope requirements are calculated as per Chapter 2, Track Clearance Requirements, and applied to the system, the system will then be capable of accommodating any current US 70% low floor vehicle that is 93 feet long or less, thus maximizing Valley Metro’s ability to accommodate vehicles from more than one builder in future.

The vehicle dynamic swept envelope for all new vehicles shall not exceed the worst case limits identified in the following diagrams and tables.

8.4.1.1 Vehicle Static & Dynamic Envelope on Level, Tangent Track

The Vehicle Static and Dynamic Envelope begins with the three vehicle composite cross sectional outline of the vehicle standing (static) on level, tangent track, such as at a station platform. The dynamic outline of the vehicle is then developed by considering the carbody movements that can occur when the vehicle is moving (dynamic) on level, tangent track. These dynamic (sway) movements come from the truck suspension elements, wheel and rail wear, and tolerances in vehicle and track construction. These worst case, not to exceed, static and dynamic body movements are shown in the following Vehicle Static & Dynamic Envelope diagram, Figure 8-4.

8.4.2 Vehicle Dynamic Envelope on Curved Track

In addition to the dynamic car body movements on level, tangent track described in Section 8.4.1, car body overhang on horizontal curvature also increases the lateral displacement of dynamic outline relative to the track centerline depending on the radius of the curve, the cross level variation, the degree of track superelevation, the wheel and track tolerances, the suspension motion, and the method of track construction, ballasted or non-ballasted.

In determining the superelevation effects, the shape of the vehicle dynamic outline has not been altered and the effects have been limited to the vehicle lean introduced by the specified difference in elevation between the two rails of the track under consideration.

The key vehicle characteristics used in these calculations were identified using a standard set of measurement points as identified below in Figures 8-5 and 8-6 and recorded in the following Tables 8-1, 8-2, and 8-3.
Table 8-1: NJT Hudson-Bergen 70% Low Floor LRV – Kinkisharyo

<table>
<thead>
<tr>
<th>BODY POINTS</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.0 mm</td>
<td>420.0 mm</td>
<td>0.0 in</td>
<td>16.5 in</td>
</tr>
<tr>
<td>B1 in</td>
<td>1340.0 mm</td>
<td>210.0 mm</td>
<td>52.8 in</td>
<td>8.3 in</td>
</tr>
<tr>
<td>B2 in</td>
<td>900.0 mm</td>
<td>730.0 mm</td>
<td>35.4 in</td>
<td>28.7 in</td>
</tr>
<tr>
<td>B3 in</td>
<td>900.0 mm</td>
<td>3110.0 mm</td>
<td>35.4 in</td>
<td>122.4 in</td>
</tr>
<tr>
<td>B4 in</td>
<td>980.0 mm</td>
<td>3630.0 mm</td>
<td>38.6 in</td>
<td>142.9 in</td>
</tr>
<tr>
<td>B5 in</td>
<td>1115.0 mm</td>
<td>3110.0 mm</td>
<td>43.9 in</td>
<td>122.4 in</td>
</tr>
<tr>
<td>M1 in</td>
<td>1458.0 mm</td>
<td>2337.0 mm</td>
<td>57.4 in</td>
<td>92.0 in</td>
</tr>
<tr>
<td>P1 in</td>
<td>990.0 mm</td>
<td>4090.0 mm</td>
<td>39.0 in</td>
<td>161.0 in</td>
</tr>
<tr>
<td>P2 in</td>
<td>800.0 mm</td>
<td>4267.0 mm</td>
<td>31.5 in</td>
<td>168.0 in</td>
</tr>
<tr>
<td>P3 center</td>
<td>0.0 mm</td>
<td>4267.0 mm</td>
<td>0.0 in</td>
<td>168.0 in</td>
</tr>
<tr>
<td>P4 in</td>
<td>990.0 mm</td>
<td>5310.0 mm</td>
<td>39.0 in</td>
<td>209.1 in</td>
</tr>
<tr>
<td>P5 in</td>
<td>800.0 mm</td>
<td>5486.0 mm</td>
<td>31.5 in</td>
<td>216.0 in</td>
</tr>
<tr>
<td>P6 center</td>
<td>0.0 mm</td>
<td>5486.0 mm</td>
<td>0.0 in</td>
<td>216.0 in</td>
</tr>
<tr>
<td>P7 in</td>
<td>990.0 mm</td>
<td>6835.0 mm</td>
<td>39.0 in</td>
<td>269.1 in</td>
</tr>
<tr>
<td>P8 in</td>
<td>800.0 mm</td>
<td>7010.0 mm</td>
<td>31.5 in</td>
<td>276.0 in</td>
</tr>
<tr>
<td>P9 Center</td>
<td>0.0 mm</td>
<td>7010.0 mm</td>
<td>0.0 in</td>
<td>276.0 in</td>
</tr>
<tr>
<td>C1</td>
<td>8521.7 mm</td>
<td>335.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>3400.0 mm</td>
<td>133.9 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>10221.7 mm</td>
<td>402.4 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Truck Wheelbase</td>
<td>1900.0 mm</td>
<td>74.8 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Truck Wheelbase</td>
<td>1800.0 mm</td>
<td>70.9 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Roll Angle</td>
<td>4.00 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Sway</td>
<td>25.4 mm</td>
<td>1.0 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9 - B5 = Length of Pantograph</td>
<td>3900.0 mm</td>
<td>153.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Roll Angle</td>
<td>0.37 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track Gauge</td>
<td>1435.0 mm</td>
<td>56.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail Head Width</td>
<td>69.0 mm</td>
<td>2.7 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rail Width</td>
<td>1504.0 mm</td>
<td>59.2 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 of Total Rail Width</td>
<td>752.0 mm</td>
<td>29.6 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK & RAIL Tolerance</td>
<td>Horizontal -Vertical +Vertical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel Wear</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Wear</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Gauge Tolerance (half)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wheel Gauge Tolerance (half)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nominal sideplay (half)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lateral Suspension Motion:</td>
<td>34</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LENGTH</th>
<th>WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 1895.0 mm</td>
<td>74.6 in</td>
</tr>
<tr>
<td>L2 3220.0 mm</td>
<td>126.8 in</td>
</tr>
<tr>
<td>L3 3220.0 mm</td>
<td>126.8 in</td>
</tr>
<tr>
<td>L4 1895.0 mm</td>
<td>74.6 in</td>
</tr>
<tr>
<td>L5 1895.0 mm</td>
<td>74.6 in</td>
</tr>
<tr>
<td>L6 1454.0 mm</td>
<td>57.2 in</td>
</tr>
</tbody>
</table>
Table 8-2: Hiawatha Minneapolis-St. Paul 70% Low Floor LRV - Bombardier

<table>
<thead>
<tr>
<th>BODY POINTS</th>
<th>X</th>
<th>Y</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1: Static Roll (mm)</td>
<td>0.0 mm</td>
<td>412.0 mm</td>
<td>0.0 in</td>
<td>16.2 in</td>
</tr>
<tr>
<td>B1: Lower body corner</td>
<td>1325.0 mm</td>
<td>210.0 mm</td>
<td>52.2 in</td>
<td>8.3 in</td>
</tr>
<tr>
<td>B2: Front end bumper</td>
<td>950.0 mm</td>
<td>730.0 mm</td>
<td>37.4 in</td>
<td>28.7 in</td>
</tr>
<tr>
<td>B3: Front roof Corner</td>
<td>1123.5 mm</td>
<td>3110.0 mm</td>
<td>44.2 in</td>
<td>122.4 in</td>
</tr>
<tr>
<td>B4: Roof Line</td>
<td>938.0 mm</td>
<td>3630.0 mm</td>
<td>36.9 in</td>
<td>142.9 in</td>
</tr>
<tr>
<td>B5: Roof Shroud</td>
<td>1123.5 mm</td>
<td>3110.0 mm</td>
<td>44.2 in</td>
<td>122.4 in</td>
</tr>
<tr>
<td>M1: Camera</td>
<td>1440.0 mm</td>
<td>2825.0 mm</td>
<td>56.7 in</td>
<td>111.2 in</td>
</tr>
<tr>
<td>P1: Pantograph</td>
<td>990.0 mm</td>
<td>4090.0 mm</td>
<td>39.0 in</td>
<td>161.0 in</td>
</tr>
<tr>
<td>P2: Center</td>
<td>800.0 mm</td>
<td>4267.0 mm</td>
<td>31.5 in</td>
<td>168.0 in</td>
</tr>
<tr>
<td>P3: Center</td>
<td>0.0 mm</td>
<td>4267.0 mm</td>
<td>0.0 in</td>
<td>168.0 in</td>
</tr>
<tr>
<td>P4: Center</td>
<td>990.0 mm</td>
<td>5310.0 mm</td>
<td>39.0 in</td>
<td>209.1 in</td>
</tr>
<tr>
<td>P5: Center</td>
<td>800.0 mm</td>
<td>5486.0 mm</td>
<td>31.5 in</td>
<td>216.0 in</td>
</tr>
<tr>
<td>P6: Center</td>
<td>0.0 mm</td>
<td>5486.0 mm</td>
<td>0.0 in</td>
<td>216.0 in</td>
</tr>
<tr>
<td>P7: Center</td>
<td>990.0 mm</td>
<td>6835.0 mm</td>
<td>39.0 in</td>
<td>269.1 in</td>
</tr>
<tr>
<td>P8: Center</td>
<td>800.0 mm</td>
<td>7010.0 mm</td>
<td>31.5 in</td>
<td>276.0 in</td>
</tr>
<tr>
<td>P9: Center</td>
<td>0.0 mm</td>
<td>7010.0 mm</td>
<td>0.0 in</td>
<td>276.0 in</td>
</tr>
<tr>
<td>C1: Pivot Center Length</td>
<td>10100.0 mm</td>
<td>397.6 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: Articulation Centers</td>
<td>1400.0 mm</td>
<td>55.1 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC: Truck Centers</td>
<td>10800.0 mm</td>
<td>425.2 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Truck Wheelbase</td>
<td>1900.0 mm</td>
<td>74.8 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Truck Wheelbase</td>
<td>1800.0 mm</td>
<td>70.9 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Roll Angle</td>
<td>4.00 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Sway</td>
<td>25.4 mm</td>
<td>1.0 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9 - B5 = Length of Pantograph</td>
<td>3900.0 mm</td>
<td>153.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Roll Angle</td>
<td>0.37 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track Gauge</td>
<td>1435.0 mm</td>
<td>56.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail Head Width</td>
<td>65.0 mm</td>
<td>2.6 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rail Width</td>
<td>1500.0 mm</td>
<td>59.1 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 of Total Rail Width</td>
<td>750.0 mm</td>
<td>29.5 in</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK & RAIL Tolerance</td>
<td>Horizontal</td>
<td>-Vertical</td>
<td>+Vertical</td>
<td></td>
</tr>
<tr>
<td>Wheel Wear</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Wear</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Gauge Tolerance (half)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wheel Gauge Tolerance (half)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nominal sideplay (half)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lateral Suspension Motion:</td>
<td>34</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LENGTH</th>
<th>WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1818.0 mm</td>
</tr>
<tr>
<td>L2</td>
<td>3220.0 mm</td>
</tr>
<tr>
<td>L3</td>
<td>2407.0 mm</td>
</tr>
<tr>
<td>L4</td>
<td>2407.0 mm</td>
</tr>
<tr>
<td>L5</td>
<td>1259.0 mm</td>
</tr>
<tr>
<td>L6</td>
<td>1634.0 mm</td>
</tr>
</tbody>
</table>
Table 8-3: S70 93 foot 70% Low Floor LRV - Siemens

<table>
<thead>
<tr>
<th>BODY POINTS</th>
<th>X (mm)</th>
<th>Y (mm)</th>
<th>X (in)</th>
<th>Y (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Static Roll (mm)</td>
<td>0.0</td>
<td>450.0</td>
<td>0.0</td>
<td>17.7</td>
</tr>
<tr>
<td>B1 Lower body corner</td>
<td>1325.0</td>
<td>210.0</td>
<td>52.2</td>
<td>8.3</td>
</tr>
<tr>
<td>B2 front end bumper</td>
<td>984.0</td>
<td>730.0</td>
<td>38.7</td>
<td>28.7</td>
</tr>
<tr>
<td>B3 Front roof Corner</td>
<td>1056.8</td>
<td>3110.0</td>
<td>41.6</td>
<td>122.4</td>
</tr>
<tr>
<td>B4 Roof Line</td>
<td>919.8</td>
<td>3630.0</td>
<td>36.2</td>
<td>142.9</td>
</tr>
<tr>
<td>B5 Roof Shroud</td>
<td>1056.8</td>
<td>3110.0</td>
<td>41.6</td>
<td>122.4</td>
</tr>
<tr>
<td>M1 Camera</td>
<td>1440.0</td>
<td>2428.0</td>
<td>56.7</td>
<td>95.6</td>
</tr>
<tr>
<td>P1 Pantograph</td>
<td>990.0</td>
<td>4090.0</td>
<td>39.0</td>
<td>161.0</td>
</tr>
<tr>
<td>P2</td>
<td>800.0</td>
<td>4267.0</td>
<td>31.5</td>
<td>168.0</td>
</tr>
<tr>
<td>P3 Center</td>
<td>0.0</td>
<td>4267.0</td>
<td>0.0</td>
<td>168.0</td>
</tr>
<tr>
<td>P4</td>
<td>990.0</td>
<td>5310.0</td>
<td>39.0</td>
<td>209.1</td>
</tr>
<tr>
<td>P5</td>
<td>800.0</td>
<td>5486.0</td>
<td>31.5</td>
<td>216.0</td>
</tr>
<tr>
<td>P6 Center</td>
<td>0.0</td>
<td>5486.0</td>
<td>0.0</td>
<td>216.0</td>
</tr>
<tr>
<td>P7</td>
<td>990.0</td>
<td>6835.0</td>
<td>39.0</td>
<td>269.1</td>
</tr>
<tr>
<td>P8</td>
<td>800.0</td>
<td>7010.0</td>
<td>31.5</td>
<td>276.0</td>
</tr>
<tr>
<td>P9 Center</td>
<td>0.0</td>
<td>7010.0</td>
<td>0.0</td>
<td>276.0</td>
</tr>
<tr>
<td>C1 Pivot Center Length</td>
<td>8205.0</td>
<td>323.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2 Articulation Centers</td>
<td>4040.0</td>
<td>159.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC Truck Centers</td>
<td>10225.0</td>
<td>402.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Truck Wheelbase</td>
<td>1900.0</td>
<td>74.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center Truck Wheelbase</td>
<td>1800.0</td>
<td>70.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Roll Angle</td>
<td>4.00 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Sway</td>
<td>25.4</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9 - B5 = Length of Pantograph</td>
<td>3900.0</td>
<td>153.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantograph Roll Angle</td>
<td>0.37 deg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track Gauge</td>
<td>1435.0</td>
<td>56.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail Head Width</td>
<td>65.0</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Rail Width</td>
<td>1500.0</td>
<td>59.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2 of Total Rail Width</td>
<td>750.0</td>
<td>29.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRUCK & RAIL Tolerance</td>
<td>Horizontal -Vertical +Vertical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel Wear</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Wear</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rail Gauge Tolerance (half)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wheel Gauge Tolerance (half)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nominal sideplay (half)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lateral Suspension Motion:</td>
<td>34</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LENGTH</th>
<th>WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 1800.0 mm</td>
<td>W1 2650.0 mm</td>
</tr>
<tr>
<td>L2 3690.0 mm</td>
<td>W2 1968.0 mm</td>
</tr>
<tr>
<td>L3 2400.0 mm</td>
<td>W3 2113.6 mm</td>
</tr>
<tr>
<td>L4 1800.0 mm</td>
<td>W4 1839.6 mm</td>
</tr>
<tr>
<td>L5 1800.0 mm</td>
<td>W5 2113.6 mm</td>
</tr>
<tr>
<td>L6 1510.0 mm</td>
<td>W6 2880.0 mm</td>
</tr>
</tbody>
</table>
The resulting worst case dynamic outswing and inswing values on ballasted and non-ballasted track are given in Tables 8-4, 8-5, 8-6 and 8-7. These tables shall be utilized in Chapter 2.3 as the Vehicle Dynamic Envelope (VDE) in establishing the Track Clearance envelope (TCE).

Table 8-4: Vehicle Outswing Values – Ballasted Track

<table>
<thead>
<tr>
<th>Radius (feet)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outswing</td>
</tr>
<tr>
<td>82</td>
<td>81.1</td>
<td>80.1</td>
<td>79.2</td>
<td>78.3</td>
<td>77.4</td>
<td>76.4</td>
<td>75.5</td>
<td>74.5</td>
<td>73.6</td>
<td>72.2</td>
<td>72.6</td>
<td>72.4</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>79.6</td>
<td>78.7</td>
<td>77.8</td>
<td>76.9</td>
<td>75.0</td>
<td>74.0</td>
<td>73.1</td>
<td>72.7</td>
<td>71.1</td>
<td>70.2</td>
<td>69.2</td>
<td>68.5</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>79.1</td>
<td>78.2</td>
<td>77.3</td>
<td>76.4</td>
<td>75.4</td>
<td>74.5</td>
<td>73.6</td>
<td>72.6</td>
<td>71.6</td>
<td>70.7</td>
<td>69.7</td>
<td>68.7</td>
<td>67.7</td>
</tr>
<tr>
<td>150</td>
<td>76.0</td>
<td>75.0</td>
<td>74.1</td>
<td>73.2</td>
<td>72.3</td>
<td>71.3</td>
<td>70.4</td>
<td>69.4</td>
<td>68.5</td>
<td>67.5</td>
<td>66.5</td>
<td>65.5</td>
<td>64.6</td>
</tr>
<tr>
<td>200</td>
<td>74.3</td>
<td>73.4</td>
<td>72.4</td>
<td>71.5</td>
<td>70.6</td>
<td>69.6</td>
<td>68.7</td>
<td>67.7</td>
<td>66.8</td>
<td>65.8</td>
<td>64.8</td>
<td>63.9</td>
<td>62.9</td>
</tr>
<tr>
<td>250</td>
<td>72.5</td>
<td>71.6</td>
<td>70.7</td>
<td>69.7</td>
<td>68.8</td>
<td>67.9</td>
<td>66.9</td>
<td>66.0</td>
<td>65.0</td>
<td>64.0</td>
<td>63.1</td>
<td>62.1</td>
<td>61.2</td>
</tr>
<tr>
<td>300</td>
<td>72.5</td>
<td>71.6</td>
<td>70.7</td>
<td>69.7</td>
<td>68.8</td>
<td>67.9</td>
<td>66.9</td>
<td>66.0</td>
<td>65.0</td>
<td>64.0</td>
<td>63.1</td>
<td>62.1</td>
<td>61.2</td>
</tr>
<tr>
<td>400</td>
<td>71.6</td>
<td>70.7</td>
<td>69.8</td>
<td>68.8</td>
<td>67.9</td>
<td>67.0</td>
<td>66.0</td>
<td>65.1</td>
<td>64.1</td>
<td>63.1</td>
<td>62.2</td>
<td>61.4</td>
<td>60.6</td>
</tr>
<tr>
<td>500</td>
<td>71.0</td>
<td>70.1</td>
<td>69.2</td>
<td>68.3</td>
<td>67.3</td>
<td>66.4</td>
<td>65.5</td>
<td>64.5</td>
<td>63.5</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.2</td>
</tr>
<tr>
<td>550</td>
<td>70.8</td>
<td>69.9</td>
<td>69.0</td>
<td>68.1</td>
<td>67.1</td>
<td>66.2</td>
<td>65.2</td>
<td>64.3</td>
<td>63.3</td>
<td>62.5</td>
<td>61.7</td>
<td>60.9</td>
<td>60.0</td>
</tr>
<tr>
<td>600</td>
<td>70.7</td>
<td>69.7</td>
<td>68.8</td>
<td>67.9</td>
<td>67.0</td>
<td>66.0</td>
<td>65.1</td>
<td>64.1</td>
<td>63.2</td>
<td>62.4</td>
<td>61.5</td>
<td>60.7</td>
<td>59.9</td>
</tr>
<tr>
<td>700</td>
<td>70.4</td>
<td>69.5</td>
<td>68.6</td>
<td>67.6</td>
<td>66.7</td>
<td>65.8</td>
<td>64.8</td>
<td>63.9</td>
<td>63.0</td>
<td>62.2</td>
<td>61.4</td>
<td>60.5</td>
<td>59.7</td>
</tr>
<tr>
<td>800</td>
<td>70.2</td>
<td>69.3</td>
<td>68.3</td>
<td>67.4</td>
<td>66.5</td>
<td>65.6</td>
<td>64.6</td>
<td>63.7</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
</tr>
<tr>
<td>900</td>
<td>70.0</td>
<td>69.1</td>
<td>68.2</td>
<td>67.3</td>
<td>66.3</td>
<td>65.4</td>
<td>64.4</td>
<td>63.5</td>
<td>62.7</td>
<td>61.9</td>
<td>61.1</td>
<td>60.3</td>
<td>59.5</td>
</tr>
<tr>
<td>1000</td>
<td>69.9</td>
<td>69.0</td>
<td>68.1</td>
<td>67.1</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.4</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.2</td>
<td>59.4</td>
</tr>
<tr>
<td>1200</td>
<td>69.7</td>
<td>68.8</td>
<td>67.9</td>
<td>66.9</td>
<td>66.0</td>
<td>65.1</td>
<td>64.1</td>
<td>63.2</td>
<td>62.4</td>
<td>61.6</td>
<td>60.8</td>
<td>60.0</td>
<td>59.2</td>
</tr>
<tr>
<td>1250</td>
<td>69.7</td>
<td>68.8</td>
<td>67.8</td>
<td>66.9</td>
<td>66.0</td>
<td>65.0</td>
<td>64.1</td>
<td>63.2</td>
<td>62.4</td>
<td>61.6</td>
<td>60.8</td>
<td>60.0</td>
<td>59.2</td>
</tr>
<tr>
<td>1450</td>
<td>69.5</td>
<td>68.6</td>
<td>67.7</td>
<td>66.8</td>
<td>65.8</td>
<td>64.9</td>
<td>64.0</td>
<td>63.1</td>
<td>62.4</td>
<td>61.6</td>
<td>60.7</td>
<td>59.9</td>
<td>59.1</td>
</tr>
<tr>
<td>1500</td>
<td>69.5</td>
<td>68.6</td>
<td>67.7</td>
<td>66.8</td>
<td>65.8</td>
<td>64.9</td>
<td>63.9</td>
<td>63.1</td>
<td>62.3</td>
<td>61.5</td>
<td>60.7</td>
<td>59.9</td>
<td>59.1</td>
</tr>
<tr>
<td>2000</td>
<td>69.3</td>
<td>68.4</td>
<td>67.5</td>
<td>66.6</td>
<td>65.6</td>
<td>64.7</td>
<td>63.8</td>
<td>63.0</td>
<td>62.2</td>
<td>61.4</td>
<td>60.6</td>
<td>59.8</td>
<td>58.9</td>
</tr>
<tr>
<td>2500</td>
<td>69.2</td>
<td>68.3</td>
<td>67.4</td>
<td>66.4</td>
<td>65.5</td>
<td>64.6</td>
<td>63.7</td>
<td>62.9</td>
<td>62.1</td>
<td>61.3</td>
<td>60.5</td>
<td>59.7</td>
<td>58.9</td>
</tr>
<tr>
<td>3200</td>
<td>69.1</td>
<td>68.2</td>
<td>67.3</td>
<td>66.3</td>
<td>65.4</td>
<td>64.5</td>
<td>63.6</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
<td>58.8</td>
</tr>
<tr>
<td>5000</td>
<td>69.0</td>
<td>68.1</td>
<td>67.1</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.5</td>
<td>62.7</td>
<td>61.9</td>
<td>61.1</td>
<td>60.3</td>
<td>59.5</td>
<td>58.7</td>
</tr>
<tr>
<td>10000</td>
<td>68.9</td>
<td>67.9</td>
<td>67.0</td>
<td>66.1</td>
<td>65.2</td>
<td>64.2</td>
<td>63.4</td>
<td>62.7</td>
<td>61.9</td>
<td>61.1</td>
<td>60.2</td>
<td>59.4</td>
<td>58.6</td>
</tr>
<tr>
<td>50000</td>
<td>68.8</td>
<td>67.8</td>
<td>66.9</td>
<td>66.0</td>
<td>65.1</td>
<td>64.2</td>
<td>63.4</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.2</td>
<td>59.4</td>
<td>58.5</td>
</tr>
<tr>
<td>Tangent</td>
<td>68.7</td>
<td>67.8</td>
<td>66.9</td>
<td>66.0</td>
<td>65.0</td>
<td>64.1</td>
<td>63.4</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.2</td>
<td>59.3</td>
<td>58.5</td>
</tr>
</tbody>
</table>

Basic Assumptions / Criterion:
- 1. Cross level variation: 1.0 inch.
- 2. All values are in inches measured from the track centerline.
- 3. Values worst case calculated values.
- 4. Maximum vehicle roll angle is 4º.
- 5. Vehicles are fitted with cameras, not mirrors.
- 6. Composite envelope derived from the following current production 70% low floor LRVs (Kinkisharyo Hudson Bergen, Bombardier Hiawatha, Siemens 93 ft S70).
- 7. Calculations include wheel and track tolerances including wheel wear, track wear, rail gauge tolerance, wheel gauge tolerance, nominal sideplay and lateral suspension motion.
Table 8-5: Vehicle Inswing Values – Ballasted Track

<table>
<thead>
<tr>
<th>Radius (feet)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inswing</td>
</tr>
<tr>
<td>82</td>
<td>77.2</td>
<td>78.2</td>
<td>79.2</td>
<td>80.3</td>
<td>81.3</td>
<td>82.3</td>
<td>83.3</td>
<td>84.3</td>
<td>85.3</td>
<td>86.3</td>
<td>87.3</td>
<td>88.3</td>
<td>89.3</td>
</tr>
<tr>
<td>95</td>
<td>74.3</td>
<td>75.3</td>
<td>76.3</td>
<td>77.4</td>
<td>78.4</td>
<td>79.4</td>
<td>80.4</td>
<td>81.4</td>
<td>82.4</td>
<td>83.4</td>
<td>84.4</td>
<td>85.4</td>
<td>86.4</td>
</tr>
<tr>
<td>100</td>
<td>73.4</td>
<td>74.4</td>
<td>75.4</td>
<td>76.4</td>
<td>77.5</td>
<td>78.5</td>
<td>79.5</td>
<td>80.5</td>
<td>81.5</td>
<td>82.5</td>
<td>83.5</td>
<td>84.5</td>
<td>85.5</td>
</tr>
<tr>
<td>150</td>
<td>67.7</td>
<td>68.7</td>
<td>69.7</td>
<td>70.7</td>
<td>71.8</td>
<td>72.8</td>
<td>73.8</td>
<td>74.8</td>
<td>75.8</td>
<td>76.8</td>
<td>77.8</td>
<td>78.8</td>
<td>79.8</td>
</tr>
<tr>
<td>200</td>
<td>64.9</td>
<td>65.9</td>
<td>66.9</td>
<td>67.9</td>
<td>68.9</td>
<td>69.9</td>
<td>70.9</td>
<td>71.9</td>
<td>72.9</td>
<td>74.0</td>
<td>75.0</td>
<td>75.9</td>
<td>76.9</td>
</tr>
<tr>
<td>250</td>
<td>65.0</td>
<td>65.8</td>
<td>66.5</td>
<td>67.4</td>
<td>68.3</td>
<td>69.2</td>
<td>70.1</td>
<td>71.0</td>
<td>71.9</td>
<td>72.8</td>
<td>73.7</td>
<td>74.6</td>
<td>75.5</td>
</tr>
<tr>
<td>300</td>
<td>65.0</td>
<td>65.8</td>
<td>66.5</td>
<td>67.4</td>
<td>68.3</td>
<td>69.2</td>
<td>70.1</td>
<td>71.0</td>
<td>71.9</td>
<td>72.8</td>
<td>73.7</td>
<td>74.6</td>
<td>75.5</td>
</tr>
<tr>
<td>400</td>
<td>66.3</td>
<td>67.3</td>
<td>68.2</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
<td>77.1</td>
</tr>
<tr>
<td>500</td>
<td>66.6</td>
<td>67.5</td>
<td>68.4</td>
<td>69.3</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.6</td>
<td>76.5</td>
<td>77.3</td>
</tr>
<tr>
<td>600</td>
<td>66.7</td>
<td>67.7</td>
<td>68.6</td>
<td>69.5</td>
<td>70.4</td>
<td>71.3</td>
<td>72.2</td>
<td>73.1</td>
<td>74.0</td>
<td>74.9</td>
<td>75.8</td>
<td>76.6</td>
<td>77.5</td>
</tr>
<tr>
<td>700</td>
<td>67.0</td>
<td>67.9</td>
<td>68.9</td>
<td>69.8</td>
<td>70.7</td>
<td>71.6</td>
<td>72.5</td>
<td>73.4</td>
<td>74.3</td>
<td>75.2</td>
<td>76.1</td>
<td>76.9</td>
<td>77.8</td>
</tr>
<tr>
<td>800</td>
<td>67.3</td>
<td>68.2</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
<td>77.2</td>
<td>78.0</td>
</tr>
<tr>
<td>900</td>
<td>67.4</td>
<td>68.3</td>
<td>69.2</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.5</td>
<td>76.4</td>
<td>77.3</td>
<td>78.2</td>
</tr>
<tr>
<td>1000</td>
<td>67.6</td>
<td>68.5</td>
<td>69.4</td>
<td>70.3</td>
<td>71.2</td>
<td>72.1</td>
<td>73.0</td>
<td>73.9</td>
<td>74.8</td>
<td>75.7</td>
<td>76.6</td>
<td>77.5</td>
<td>78.3</td>
</tr>
<tr>
<td>1200</td>
<td>67.8</td>
<td>68.7</td>
<td>69.6</td>
<td>70.5</td>
<td>71.4</td>
<td>72.3</td>
<td>73.2</td>
<td>74.1</td>
<td>75.0</td>
<td>75.9</td>
<td>76.8</td>
<td>77.7</td>
<td>78.5</td>
</tr>
<tr>
<td>1250</td>
<td>67.8</td>
<td>68.7</td>
<td>69.6</td>
<td>70.5</td>
<td>71.4</td>
<td>72.3</td>
<td>73.2</td>
<td>74.1</td>
<td>75.0</td>
<td>75.9</td>
<td>76.8</td>
<td>77.7</td>
<td>78.6</td>
</tr>
<tr>
<td>1450</td>
<td>67.9</td>
<td>68.8</td>
<td>69.7</td>
<td>70.7</td>
<td>71.6</td>
<td>72.5</td>
<td>73.4</td>
<td>74.3</td>
<td>75.2</td>
<td>76.1</td>
<td>76.9</td>
<td>77.8</td>
<td>78.7</td>
</tr>
<tr>
<td>1500</td>
<td>68.0</td>
<td>68.9</td>
<td>69.8</td>
<td>70.7</td>
<td>71.6</td>
<td>72.5</td>
<td>73.4</td>
<td>74.3</td>
<td>75.2</td>
<td>76.1</td>
<td>77.0</td>
<td>77.9</td>
<td>78.7</td>
</tr>
<tr>
<td>2000</td>
<td>68.1</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
<td>77.2</td>
<td>78.1</td>
<td>78.9</td>
</tr>
<tr>
<td>2500</td>
<td>68.3</td>
<td>69.2</td>
<td>70.1</td>
<td>71.0</td>
<td>71.9</td>
<td>72.8</td>
<td>73.7</td>
<td>74.6</td>
<td>75.5</td>
<td>76.4</td>
<td>77.3</td>
<td>78.2</td>
<td>79.1</td>
</tr>
<tr>
<td>3200</td>
<td>68.4</td>
<td>69.3</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.6</td>
<td>76.5</td>
<td>77.4</td>
<td>78.3</td>
<td>79.2</td>
</tr>
<tr>
<td>5000</td>
<td>68.5</td>
<td>69.4</td>
<td>70.3</td>
<td>71.2</td>
<td>72.1</td>
<td>73.0</td>
<td>73.9</td>
<td>74.8</td>
<td>75.7</td>
<td>76.6</td>
<td>77.5</td>
<td>78.4</td>
<td>79.3</td>
</tr>
<tr>
<td>10000</td>
<td>68.6</td>
<td>69.5</td>
<td>70.4</td>
<td>71.3</td>
<td>72.2</td>
<td>73.1</td>
<td>74.0</td>
<td>74.9</td>
<td>75.8</td>
<td>76.7</td>
<td>77.6</td>
<td>78.5</td>
<td>79.4</td>
</tr>
<tr>
<td>50000</td>
<td>68.7</td>
<td>69.6</td>
<td>70.5</td>
<td>71.5</td>
<td>72.4</td>
<td>73.3</td>
<td>74.2</td>
<td>75.1</td>
<td>76.0</td>
<td>76.9</td>
<td>77.8</td>
<td>78.6</td>
<td>79.5</td>
</tr>
<tr>
<td>Tangent</td>
<td>68.7</td>
<td>69.7</td>
<td>70.6</td>
<td>71.5</td>
<td>72.4</td>
<td>73.3</td>
<td>74.2</td>
<td>75.1</td>
<td>76.0</td>
<td>76.9</td>
<td>77.8</td>
<td>78.6</td>
<td>79.5</td>
</tr>
</tbody>
</table>

Basic Assumptions / Criterion:
1. Cross level variation: 1.0 inch.
2. All values are in inches measured from the track centerline.
3. Values worst case calculated values.
4. Maximum vehicle roll angle is 4º.
5. Vehicles are fitted with cameras, not mirrors.
6. Composite envelope derived from the following current production 70% low floor LRVs (Kinkisharyo Hudson Bergen, Bombardier Hiawatha, Siemens 93 ft S70).
7. Calculations include wheel and track tolerances including wheel wear, track wear, rail gauge tolerance, wheel gauge tolerance, nominal sideplay and lateral suspension motion.
Table 8-6: Vehicle Outswing Values – Non-ballasted Track

<table>
<thead>
<tr>
<th>Radius (feet)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outswing</td>
</tr>
<tr>
<td>82</td>
<td>79.5</td>
<td>76.5</td>
<td>77.6</td>
<td>76.7</td>
<td>75.7</td>
<td>74.8</td>
<td>73.8</td>
<td>73.2</td>
<td>73.0</td>
<td>72.7</td>
<td>72.4</td>
<td>72.2</td>
<td>71.9</td>
</tr>
<tr>
<td>95</td>
<td>78.0</td>
<td>77.1</td>
<td>76.1</td>
<td>75.2</td>
<td>74.3</td>
<td>73.3</td>
<td>72.4</td>
<td>71.4</td>
<td>70.4</td>
<td>69.4</td>
<td>68.6</td>
<td>68.3</td>
<td>68.0</td>
</tr>
<tr>
<td>100</td>
<td>77.5</td>
<td>76.6</td>
<td>75.7</td>
<td>74.7</td>
<td>73.8</td>
<td>72.8</td>
<td>71.9</td>
<td>70.9</td>
<td>69.9</td>
<td>69.0</td>
<td>68.0</td>
<td>67.1</td>
<td>66.8</td>
</tr>
<tr>
<td>150</td>
<td>74.4</td>
<td>73.4</td>
<td>72.5</td>
<td>71.6</td>
<td>70.6</td>
<td>69.7</td>
<td>68.7</td>
<td>67.8</td>
<td>66.8</td>
<td>65.8</td>
<td>64.8</td>
<td>63.8</td>
<td>63.0</td>
</tr>
<tr>
<td>200</td>
<td>72.7</td>
<td>71.7</td>
<td>70.8</td>
<td>69.9</td>
<td>68.9</td>
<td>68.0</td>
<td>67.0</td>
<td>66.1</td>
<td>65.1</td>
<td>64.1</td>
<td>63.1</td>
<td>62.1</td>
<td>61.1</td>
</tr>
<tr>
<td>250</td>
<td>70.9</td>
<td>70.0</td>
<td>69.0</td>
<td>68.1</td>
<td>67.2</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.3</td>
<td>62.3</td>
<td>61.5</td>
<td>60.6</td>
<td>59.8</td>
</tr>
<tr>
<td>300</td>
<td>70.0</td>
<td>70.0</td>
<td>69.0</td>
<td>68.1</td>
<td>67.2</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.3</td>
<td>62.3</td>
<td>61.5</td>
<td>60.6</td>
<td>59.8</td>
</tr>
<tr>
<td>400</td>
<td>69.0</td>
<td>69.1</td>
<td>68.1</td>
<td>67.2</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.4</td>
<td>62.4</td>
<td>61.5</td>
<td>60.6</td>
<td>60.0</td>
<td>59.1</td>
</tr>
<tr>
<td>500</td>
<td>69.4</td>
<td>68.5</td>
<td>67.6</td>
<td>66.6</td>
<td>65.7</td>
<td>64.7</td>
<td>63.8</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
<td>58.7</td>
</tr>
<tr>
<td>550</td>
<td>69.2</td>
<td>68.3</td>
<td>67.4</td>
<td>66.4</td>
<td>65.5</td>
<td>64.5</td>
<td>63.6</td>
<td>62.7</td>
<td>61.9</td>
<td>61.1</td>
<td>60.2</td>
<td>59.4</td>
<td>58.6</td>
</tr>
<tr>
<td>600</td>
<td>69.1</td>
<td>68.1</td>
<td>67.2</td>
<td>66.3</td>
<td>65.3</td>
<td>64.4</td>
<td>63.4</td>
<td>62.6</td>
<td>61.8</td>
<td>60.9</td>
<td>60.1</td>
<td>59.3</td>
<td>58.5</td>
</tr>
<tr>
<td>700</td>
<td>68.8</td>
<td>67.9</td>
<td>66.9</td>
<td>65.9</td>
<td>64.9</td>
<td>63.9</td>
<td>62.9</td>
<td>61.9</td>
<td>61.1</td>
<td>60.3</td>
<td>59.4</td>
<td>58.6</td>
<td>57.8</td>
</tr>
<tr>
<td>800</td>
<td>68.6</td>
<td>67.7</td>
<td>66.7</td>
<td>65.8</td>
<td>64.8</td>
<td>63.9</td>
<td>63.0</td>
<td>62.2</td>
<td>61.4</td>
<td>60.6</td>
<td>59.8</td>
<td>59.0</td>
<td>58.1</td>
</tr>
<tr>
<td>900</td>
<td>68.4</td>
<td>67.5</td>
<td>66.6</td>
<td>65.6</td>
<td>64.7</td>
<td>63.7</td>
<td>62.9</td>
<td>62.1</td>
<td>61.3</td>
<td>60.5</td>
<td>59.7</td>
<td>58.8</td>
<td>58.0</td>
</tr>
<tr>
<td>1000</td>
<td>68.3</td>
<td>67.4</td>
<td>66.4</td>
<td>65.5</td>
<td>64.6</td>
<td>63.6</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
<td>58.7</td>
<td>57.9</td>
</tr>
<tr>
<td>1200</td>
<td>68.1</td>
<td>67.2</td>
<td>66.2</td>
<td>65.3</td>
<td>64.4</td>
<td>63.5</td>
<td>62.7</td>
<td>61.9</td>
<td>61.1</td>
<td>60.3</td>
<td>59.4</td>
<td>58.6</td>
<td>57.8</td>
</tr>
<tr>
<td>1250</td>
<td>68.1</td>
<td>67.1</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.4</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.2</td>
<td>59.4</td>
<td>58.6</td>
<td>57.8</td>
</tr>
<tr>
<td>1450</td>
<td>67.9</td>
<td>67.0</td>
<td>66.1</td>
<td>65.1</td>
<td>64.2</td>
<td>63.3</td>
<td>62.6</td>
<td>61.8</td>
<td>61.0</td>
<td>60.1</td>
<td>59.3</td>
<td>58.5</td>
<td>57.7</td>
</tr>
<tr>
<td>1500</td>
<td>67.9</td>
<td>67.0</td>
<td>66.1</td>
<td>65.1</td>
<td>64.2</td>
<td>63.3</td>
<td>62.5</td>
<td>61.7</td>
<td>60.9</td>
<td>60.1</td>
<td>59.3</td>
<td>58.5</td>
<td>57.6</td>
</tr>
<tr>
<td>2000</td>
<td>67.7</td>
<td>66.8</td>
<td>65.9</td>
<td>64.9</td>
<td>64.0</td>
<td>63.2</td>
<td>62.4</td>
<td>61.6</td>
<td>60.8</td>
<td>60.0</td>
<td>59.2</td>
<td>58.3</td>
<td>57.5</td>
</tr>
<tr>
<td>2500</td>
<td>67.6</td>
<td>66.7</td>
<td>65.7</td>
<td>64.8</td>
<td>63.9</td>
<td>63.1</td>
<td>62.3</td>
<td>61.5</td>
<td>60.7</td>
<td>59.9</td>
<td>59.1</td>
<td>58.2</td>
<td>57.4</td>
</tr>
<tr>
<td>3200</td>
<td>67.5</td>
<td>66.6</td>
<td>65.6</td>
<td>64.7</td>
<td>63.8</td>
<td>63.0</td>
<td>62.2</td>
<td>61.4</td>
<td>60.6</td>
<td>59.8</td>
<td>59.0</td>
<td>58.2</td>
<td>57.3</td>
</tr>
<tr>
<td>5000</td>
<td>67.4</td>
<td>66.4</td>
<td>65.5</td>
<td>64.6</td>
<td>63.7</td>
<td>62.9</td>
<td>62.1</td>
<td>61.3</td>
<td>60.5</td>
<td>59.7</td>
<td>58.9</td>
<td>58.1</td>
<td>57.2</td>
</tr>
<tr>
<td>10000</td>
<td>67.3</td>
<td>66.3</td>
<td>65.4</td>
<td>64.5</td>
<td>63.6</td>
<td>62.9</td>
<td>62.1</td>
<td>61.3</td>
<td>60.5</td>
<td>59.6</td>
<td>58.8</td>
<td>58.0</td>
<td>57.2</td>
</tr>
<tr>
<td>50000</td>
<td>67.2</td>
<td>66.2</td>
<td>65.3</td>
<td>64.4</td>
<td>63.6</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
<td>58.8</td>
<td>57.9</td>
<td>57.1</td>
</tr>
<tr>
<td>Tangent</td>
<td>67.1</td>
<td>66.2</td>
<td>65.3</td>
<td>64.3</td>
<td>63.6</td>
<td>62.8</td>
<td>62.0</td>
<td>61.2</td>
<td>60.4</td>
<td>59.6</td>
<td>58.7</td>
<td>57.9</td>
<td>57.1</td>
</tr>
</tbody>
</table>

Basic Assumptions / Criterion:
1. Cross level variation: 0.125 inch.
2. All values are in inches measured from the track centerline.
3. Values worst case calculated values.
4. Maximum vehicle roll angle is 4º.
5. Vehicles are fitted with cameras, not mirrors.
6. Composite envelope derived from the following current production 70% low floor LRVs (Kinkisharyo Hudson Bergen, Bombardier Hiawatha, Siemens 93 ft S70).
7. Calculations include wheel and track tolerances including wheel wear, track wear, rail gauge tolerance, wheel gauge tolerance, nominal sideplay and lateral suspension motion.
Table 8-7: Vehicle Inswing Values – Non-ballasted Track

<table>
<thead>
<tr>
<th>Radius (feet)</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>76.1</td>
<td>76.4</td>
<td>77.5</td>
<td>78.5</td>
<td>79.5</td>
<td>80.5</td>
<td>81.5</td>
<td>82.5</td>
<td>83.5</td>
<td>84.5</td>
<td>85.5</td>
<td>86.6</td>
<td>87.6</td>
</tr>
<tr>
<td>95</td>
<td>73.2</td>
<td>73.5</td>
<td>74.6</td>
<td>75.6</td>
<td>76.6</td>
<td>77.6</td>
<td>78.6</td>
<td>79.6</td>
<td>80.6</td>
<td>81.6</td>
<td>82.7</td>
<td>83.7</td>
<td>84.7</td>
</tr>
<tr>
<td>100</td>
<td>72.3</td>
<td>72.6</td>
<td>73.7</td>
<td>74.7</td>
<td>75.7</td>
<td>76.7</td>
<td>77.7</td>
<td>78.7</td>
<td>79.7</td>
<td>80.7</td>
<td>81.7</td>
<td>82.7</td>
<td>83.7</td>
</tr>
<tr>
<td>150</td>
<td>66.6</td>
<td>66.9</td>
<td>67.9</td>
<td>69.0</td>
<td>70.0</td>
<td>71.0</td>
<td>72.0</td>
<td>73.0</td>
<td>74.0</td>
<td>75.0</td>
<td>76.0</td>
<td>77.0</td>
<td>78.0</td>
</tr>
<tr>
<td>200</td>
<td>63.8</td>
<td>64.1</td>
<td>65.1</td>
<td>66.1</td>
<td>67.2</td>
<td>68.2</td>
<td>69.2</td>
<td>70.2</td>
<td>71.2</td>
<td>72.2</td>
<td>73.2</td>
<td>74.2</td>
<td>75.2</td>
</tr>
<tr>
<td>250</td>
<td>63.7</td>
<td>64.5</td>
<td>65.2</td>
<td>66.0</td>
<td>66.7</td>
<td>67.6</td>
<td>68.5</td>
<td>69.4</td>
<td>70.3</td>
<td>71.2</td>
<td>72.1</td>
<td>73.0</td>
<td>73.9</td>
</tr>
<tr>
<td>300</td>
<td>63.7</td>
<td>64.5</td>
<td>65.2</td>
<td>66.0</td>
<td>66.7</td>
<td>67.6</td>
<td>68.5</td>
<td>69.4</td>
<td>70.3</td>
<td>71.2</td>
<td>72.1</td>
<td>73.0</td>
<td>73.9</td>
</tr>
<tr>
<td>400</td>
<td>64.5</td>
<td>65.2</td>
<td>66.0</td>
<td>66.9</td>
<td>67.8</td>
<td>68.7</td>
<td>69.6</td>
<td>70.5</td>
<td>71.4</td>
<td>72.3</td>
<td>73.2</td>
<td>74.1</td>
<td>75.0</td>
</tr>
<tr>
<td>500</td>
<td>64.9</td>
<td>65.7</td>
<td>66.6</td>
<td>67.5</td>
<td>68.4</td>
<td>69.3</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.6</td>
</tr>
<tr>
<td>550</td>
<td>65.1</td>
<td>65.9</td>
<td>66.8</td>
<td>67.7</td>
<td>68.6</td>
<td>69.5</td>
<td>70.4</td>
<td>71.3</td>
<td>72.2</td>
<td>73.1</td>
<td>74.0</td>
<td>74.9</td>
<td>75.8</td>
</tr>
<tr>
<td>600</td>
<td>65.2</td>
<td>66.1</td>
<td>67.0</td>
<td>67.9</td>
<td>68.8</td>
<td>69.7</td>
<td>70.6</td>
<td>71.5</td>
<td>72.4</td>
<td>73.3</td>
<td>74.2</td>
<td>75.1</td>
<td>76.0</td>
</tr>
<tr>
<td>700</td>
<td>65.4</td>
<td>66.3</td>
<td>67.3</td>
<td>68.2</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
</tr>
<tr>
<td>800</td>
<td>65.6</td>
<td>66.6</td>
<td>67.5</td>
<td>68.4</td>
<td>69.3</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.6</td>
<td>76.5</td>
</tr>
<tr>
<td>900</td>
<td>65.8</td>
<td>66.7</td>
<td>67.6</td>
<td>68.6</td>
<td>69.5</td>
<td>70.4</td>
<td>71.3</td>
<td>72.2</td>
<td>73.1</td>
<td>74.0</td>
<td>74.9</td>
<td>75.8</td>
<td>76.7</td>
</tr>
<tr>
<td>1000</td>
<td>65.9</td>
<td>66.9</td>
<td>67.8</td>
<td>68.7</td>
<td>69.6</td>
<td>70.5</td>
<td>71.4</td>
<td>72.3</td>
<td>73.2</td>
<td>74.1</td>
<td>75.0</td>
<td>75.9</td>
<td>76.8</td>
</tr>
<tr>
<td>1200</td>
<td>66.1</td>
<td>67.1</td>
<td>68.0</td>
<td>68.9</td>
<td>69.8</td>
<td>70.7</td>
<td>71.6</td>
<td>72.5</td>
<td>73.4</td>
<td>74.3</td>
<td>75.2</td>
<td>76.1</td>
<td>77.0</td>
</tr>
<tr>
<td>1250</td>
<td>66.2</td>
<td>67.1</td>
<td>68.0</td>
<td>68.9</td>
<td>69.8</td>
<td>70.8</td>
<td>71.7</td>
<td>72.6</td>
<td>73.5</td>
<td>74.4</td>
<td>75.3</td>
<td>76.2</td>
<td>77.0</td>
</tr>
<tr>
<td>1450</td>
<td>66.3</td>
<td>67.2</td>
<td>68.2</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
<td>77.2</td>
</tr>
<tr>
<td>1500</td>
<td>66.3</td>
<td>67.3</td>
<td>68.2</td>
<td>69.1</td>
<td>70.0</td>
<td>70.9</td>
<td>71.8</td>
<td>72.7</td>
<td>73.6</td>
<td>74.5</td>
<td>75.4</td>
<td>76.3</td>
<td>77.2</td>
</tr>
<tr>
<td>2000</td>
<td>66.5</td>
<td>67.5</td>
<td>68.4</td>
<td>69.3</td>
<td>70.2</td>
<td>71.1</td>
<td>72.0</td>
<td>72.9</td>
<td>73.8</td>
<td>74.7</td>
<td>75.6</td>
<td>76.5</td>
<td>77.4</td>
</tr>
<tr>
<td>2500</td>
<td>66.7</td>
<td>67.6</td>
<td>68.5</td>
<td>69.4</td>
<td>70.3</td>
<td>71.2</td>
<td>72.1</td>
<td>73.0</td>
<td>73.9</td>
<td>74.8</td>
<td>75.7</td>
<td>76.6</td>
<td>77.5</td>
</tr>
<tr>
<td>3200</td>
<td>66.8</td>
<td>67.6</td>
<td>68.6</td>
<td>69.5</td>
<td>70.4</td>
<td>71.3</td>
<td>72.2</td>
<td>73.1</td>
<td>74.0</td>
<td>74.9</td>
<td>75.8</td>
<td>76.7</td>
<td>77.6</td>
</tr>
<tr>
<td>5000</td>
<td>66.9</td>
<td>67.8</td>
<td>68.7</td>
<td>69.6</td>
<td>70.6</td>
<td>71.5</td>
<td>72.4</td>
<td>73.3</td>
<td>74.2</td>
<td>75.1</td>
<td>76.0</td>
<td>76.9</td>
<td>77.7</td>
</tr>
<tr>
<td>10000</td>
<td>67.0</td>
<td>67.9</td>
<td>68.9</td>
<td>69.8</td>
<td>70.7</td>
<td>71.6</td>
<td>72.5</td>
<td>73.4</td>
<td>74.3</td>
<td>75.2</td>
<td>76.1</td>
<td>77.0</td>
<td>77.9</td>
</tr>
<tr>
<td>50000</td>
<td>67.1</td>
<td>68.0</td>
<td>68.9</td>
<td>69.9</td>
<td>70.8</td>
<td>71.7</td>
<td>72.6</td>
<td>73.5</td>
<td>74.4</td>
<td>75.3</td>
<td>76.2</td>
<td>77.1</td>
<td>78.0</td>
</tr>
<tr>
<td>Tangent</td>
<td>67.1</td>
<td>68.1</td>
<td>69.0</td>
<td>69.9</td>
<td>70.8</td>
<td>71.7</td>
<td>72.6</td>
<td>73.5</td>
<td>74.4</td>
<td>75.3</td>
<td>76.2</td>
<td>77.1</td>
<td>78.0</td>
</tr>
</tbody>
</table>

Basic Assumptions / Criterion:
1. Cross level variation: 0.125 inch.
2. All values are in inches measured from the track centerline.
3. Values worst case calculated values.
4. Maximum vehicle roll angle is 4º.
5. Vehicles are fitted with cameras, not mirrors.
6. Composite envelope derived from the following current production 70% low floor LRVs (Kinkisharyo Hudson Bergen, Bombardier Hiawatha, Siemens 93 ft S70).
7. Calculations include wheel and track tolerances including wheel wear, track wear, rail gauge tolerance, wheel gauge tolerance, nominal sideplay and lateral suspension motion.
8.5 Vehicle Weight and Design Loading

The maximum assigned weight (AW) of a vehicle shall be no greater than those shown in Table 8-8, Vehicle Weights for Design Purposes, and are based on an average passenger weight of 154 lbs.

Equipment installation shall be arranged so that its weight is evenly distributed to provide the lowest possible center of gravity in order to limit the tendency of the vehicle to overturn, maximize adhesion, and minimize axle loads. Weight distribution on the center truck shall remain within 25 to 35% of the total vehicle weight at any assigned weight.

<table>
<thead>
<tr>
<th>Loading Condition</th>
<th>Maximum Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW0 (Ready to Run)</td>
<td>Maximum empty operating weight 102,530 lbs.</td>
</tr>
<tr>
<td>AW1 (Seated load)</td>
<td>AW0 weight plus 66 seated load passengers and one Operator 112,848 lbs.</td>
</tr>
<tr>
<td>AW2 (Design load)</td>
<td>AW1 load plus 110 standees at 2.7 feet² of suitable standing space per standee 129,788 lbs.</td>
</tr>
<tr>
<td>AW3 (Crush load)</td>
<td>AW1 load plus 165 standees at 1.8 feet² of suitable standing space per standee 138,258 lbs.</td>
</tr>
<tr>
<td>AW4 (Carbody Structural Design)</td>
<td>AW1 load plus 220 standees at 1.35 feet² of suitable standing space per standee 146,728 lbs.</td>
</tr>
</tbody>
</table>

8.6 Vehicle Performance

The Propulsion and Braking Systems shall be rated to provide safe and satisfactory operation on the Valley Metro LRT system under the specified loads and anticipated environmental conditions identified herein, up to the maximum specified speed, with acceleration, deceleration and jerk rates within acceptable passenger comfort limits.

The performance of the propulsion and braking systems shall be compatible with the performance of Valley Metro’s existing LRT vehicles.

8.6.1 Supply Voltage

All vehicle equipment shall be designed to operate satisfactorily over the power system supply range identified in Section 8.2.

8.6.2 Operation Under Reduced Supply Voltage

In order to optimize the power supply system performance, forced reduced performance shall be provided under low voltage conditions. If the line voltage falls below 625 Vdc, the propulsion current limit will be lowered progressively at a rate of 0.5 percent per volt. The control algorithm used shall provide dynamic stability of the current limiting process without oscillations or whipsaws.
8.6.3 **Maximum Line Current**

The maximum line draw per vehicle shall not exceed 1,350 amperes (propulsion plus auxiliaries).

8.6.4 **Acceleration**

A maximum acceleration rate of 3.0 mphps, ± 5 percent, with vehicle loadings of AW0 through AW2 and nominal line voltage, shall be available from 0 to 20 mph.

Acceleration rates may decrease linearly for AW2 through AW4 loadings. At line voltages below 750 Vdc, the speed to which the initial acceleration rate is held may decrease proportionally to catenary voltage.

The maximum variation between vehicles in acceleration from the nominal rate due to propulsion control shall not exceed 0.20 mphps.

The maximum period of time required to reach the following speeds from a standing start [AW2 loading] shall be:

- 0 to 20 mph 8 sec
- 0 to 25 mph 10 sec
- 0 to 50 mph 35 sec
- 0 to 55 mph 45 sec

If a higher maximum normal operating speed is directed by Valley Metro, the Designer shall specify the corresponding maximum period of time required to reach that speed.

8.6.5 **Service Braking**

The average deceleration rate for full service braking shall be 2.2 mphps for speeds between 55 mph and 45 mph, and 3.0 mphps ±5 percent from 45 mph to a complete stop.

Dynamic braking shall contribute to the braking effort as long as possible, with down to 6 mph being the minimum acceptable drop out point.

The not-to-exceed stopping distances [AW3 loading] with a jerk limit of 1.55 mphpssp, shall be as follows:

- From 55 mph to zero: 880 feet
- From 45 mph to zero: 591 feet

If a higher maximum normal operating speed is directed by Valley Metro, the Designer shall specify the not-to-exceed stopping distance for that speed.
8.6.6 Emergency Braking
For up to AW3 vehicle loadings, the average emergency deceleration rate from 65 mph to 30 mph shall be at least 4.0 mphps. From 30 mph to a full stop, the average deceleration rate shall be at least 4.5 mphps and limited only by the capability of the electromagnetic track brake.

The not-to-exceed stopping distances shall be as follows:

- From 55 mph to zero: 536 feet
- From 40 mph to zero: 275 feet
- From 30 mph to zero: 147 feet

If a higher maximum normal operating speed is directed by Valley Metro, the Designer shall specify the not-to-exceed stopping distance for that speed.

8.6.7 Parking Brake
A parking brake system capable of holding an AW4 loaded vehicle on a 7% grade for an indefinite period of time shall be provided.

8.6.8 Operating Speed
The maximum normal operating speed shall be 55 mph, unless otherwise directed by Valley Metro. The Designer shall verify maximum normal operating speed with Valley Metro prior to commencing with design.

8.6.9 Duty Cycle
The propulsion and braking systems shall be capable of operating continuously, without exceeding the continuous rating of any vehicle equipment at AW2 loading, operating in a single vehicle consist, at 750 Vdc, on a duty cycle comprised of full power acceleration and braking to maintain the maximum allowable track speeds between stations. Each duty cycle shall assume between 5 and 20 seconds dwell time at each station stop and layovers of between 2 and 11 minutes at the ends of each line.

8.6.10 Annual Average Mileage
The vehicle shall be designed based upon an estimated annual mileage of 45,000 miles per vehicle.

8.6.11 On-Board Diagnostics
An annunciation device shall be provided on each vehicle to provide information regarding malfunctions of vehicle systems and equipment. Each malfunction shall be uniquely indicated on an on-board status panel readily accessible to operating and maintenance personnel. Each indicator shall continue to annunciate the specific malfunction until the indicator is reset.
8.7 Passenger Comfort

This section defines the requirements for passenger comfort on the vehicle including HVAC, noise, ride quality, lighting and interior design.

8.7.1 Heating Ventilation and Air Conditioning

8.7.1.1 General

Given the extreme temperatures of the Phoenix area, the HVAC system is a critical vehicle subsystem. The HVAC system design shall make every effort to reduce the requirement for air conditioning capacity through utilization of vehicle passive and active measures that will reduce solar and radiated heat load, while minimizing cool air loss. Capacity and initial functionality of the HVAC system shall be proven by full vehicle climate chamber qualification testing. Acceptable capacity qualification testing shall be in accordance with the air/enthalpy method as defined in ASHRAE Standard 37 or acceptable equivalent.

The vehicle heating, ventilation, and air conditioning (HVAC) system shall meet the following performance requirements:

- **Air Conditioning.** Each vehicle shall have at least two equal and independent air-conditioning systems with interconnected ductwork having an aggregate cooling capacity equal to the maximum calculated cooling requirement for the vehicle.
- **Ventilation and Air Circulation.** All of the ventilated air shall be introduced through the air-conditioning equipment and shall not include air introduced when the doors are open. There shall be no passenger-openable windows for ventilation provided.
- **Heating.** The total heating system shall have the capacity equal to the maximum calculated heating requirement for the vehicle. No floor level or underseat heaters shall be provided.
- **Condensation and Humidity.** The HVAC system shall minimize condensation on interior surfaces, including windows. Reheat is permitted if required to limit the interior humidity.
- **Controls/Temperature Uniformity.** Interior temperature shall be fully automatically controlled in cooling, ventilation and heating modes without manual intervention.
- **Air Flow, Diffusion and Discharge Temperature.** The air distribution system shall provide sufficient diffusion at the outlet or diffuser so that air mixing will prevent direct impingement of air onto occupants.
- **Environmental Emission Standards:** The air-conditioning system shall meet all international environmental emission standards, and shall utilize environmentally friendly R-407C refrigerant or Valley Metro approved alternative.

8.7.1.2 Temperature Control

The HVAC system controls shall maintain the vehicle interior conditions so as to remain within the comfort zone of acceptable indoor operative temperature ranges as shown in Figure 8-7 below. However, given the relative lack of humidity in the Phoenix area during much of the year, air humidification measures will not be required.
The maximum allowable variations in temperature in the vehicle passenger areas shall be as follows:

- Less than 4º F variation at any height from 6 in to 48 in above the floor
- Average vehicle temperature shall be within 2º F of the comfort zone requirements within 2 minutes following a 30 second opening of all vehicle passenger doors on one side.

The maximum allowable variation in temperature in the vehicle operating cabs shall be as follows:

- Less than 4º F variation at any height from 6 in to 48 in above the floor

8.7.1.3 Interior Fresh Air Intake
Intake of filtered fresh air shall be provided for each vehicle, the required fresh air volume being between 1200 ft³/min and 1400 ft³/min regardless of vehicle position in a train or the vehicle speed and shall be adequate to maintain the positive pressurization requirements of Section 8.7.1.5.

8.7.1.4 Interior Air Filtration
The HVAC system filter elements shall be capable of removing fine dust and allergens to an 85 percent efficiency level as per ASHRAE 52.2 – Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size.

8.7.1.5 Interior Positive Pressurization
The ventilation system shall maintain a vehicle internal positive static pressure at all vehicle speeds and a minimum static pressure of 0.10 in of water when all doors and windows are closed.

8.7.1.6 Interior Maximum Air Velocity
To increase system efficiency and minimize air noise, the maximum air velocity through the HVAC ductwork shall be 1200 ft/min.

8.7.1.7 Design Temperatures
For the purposes of the overall HVAC system design, the following design parameters shall be used:

- Phoenix Latitude : 33.4º, Elevation : 1106 ft
- Summer Design Ambient: 112ºF DB, 76ºF WB
- Summer vehicle interior: 76ºF, 50% RH
- Air entering HVAC condenser or external roof mounted equipment: 122ºF
- Winter Design Ambient: 34ºF DB
- Winter vehicle Interior: 70ºF
8.7.1.8 Cooling Loads
For the purposes of HVAC cooling system design, the following thermal load parameters shall be used in calculating HVAC system performance and sizing HVAC units:

- Occupants: Max. 72 seated, 106 standees, one operator
 - Seated passengers: 400 Btu/hr TH, 245 Btu/hr SH per passenger
 - Standees: 450 Btu/hr TH, 250 Btu/hr SH per passenger
 - Operator: 750 Btu/hr TH, 275 Btu/hr SH
- Fresh Air: as required by Section 2.4.2.3.
- Carbody Conduction: The Contractor shall provide ‘U’ factors and associated surface areas for the vehicle walls, doors, ceiling, floor, window glass and vehicle ends based on the worst case car skin temperature and the specified interior temperature for use in the HVAC calculations.
- Solar Gain: The attendant solar gain shall be calculated based on a Phoenix location on July 21st at 1600 hours with the maximum possible area of vehicle window, door, and windshield glass facing into the sun.
- External Radiated Heat Loads: Radiated heat loads generated by roof mounted equipment and underfloor mounted equipment, including the effect of the skirts, shall be provided. Radiated heat generated by the street / roadbed shall be included in the HVAC calculations with no deduction for any shading effects arising from the passing of the vehicle, i.e., the vehicle underfloor is fully exposed to this heat source. For this part of the calculation, a street surface temperature of 140°F shall be utilized.
- Door Opening Heat Loads: For an average duty cycle, the vehicle doors may be open up to 15% of the journey time, leaving approximately 83 ft² of the vehicle open to the elements at each station stop. Given the specified fresh air requirements, assume 8.5 300 ft³/min of cool air is lost per door with each opening (20 sec / stop). Special event services will be the worst case, thus it shall be assumed that all doors on one side will be opened at each station stop. Cooling loss / heat gain arising from periodic door opening (convection and radiated) shall be included in the HVAC calculations. The vehicle duty cycle specified in Section 8.6.9 shall be used as the basis for modeling this phenomenon.
- Internal Heat Loads: All necessary supplemental information regarding internal heat generated inside the vehicle by lighting, control electronics, etc. shall be provided for input into the HVAC calculations.

8.7.2 Noise Levels
Noise levels shall not exceed the levels indicated below under normal operating conditions with all equipment functioning. Measurement of exterior noise levels shall be made on level ground and in an essentially free field environment, 50 ft from the centerline of track perpendicular to the vehicle, on newly ground welded rail, at a height of 5 ft, away from reflecting surfaces, and on adjacent ground other than ballast, ties, and track.
Measurement of interior noise levels shall be made at designated points 3 ft from the left and right side walls, 4 ft from the floor.

8.7.2.1 Interior Noise
With all auxiliary equipment operating simultaneously under normal operating conditions, the noise level inside the vehicle shall average no more than 70 dBA stationary (72 dBA with all auxiliary systems operating and all HVAC units in full cooling mode, 68 dBA with any one system operating) and 75 dBA at 40 mph.

8.7.2.2 Exterior Noise
Average noise levels emanating from the vehicle shall not exceed the following levels on non-corrugated, tangent track with all auxiliary equipment operating simultaneously:

- Vehicle stationary, empty: 68 dBA
- Vehicle moving, empty, on horizontal tangent track at 40 mph: 75 dBA
- In maximum dynamic braking or maximum friction braking from 40 mph with new wheels: 75 dBA

8.7.2.3 Wheel Squeal Prevention
GPS activated, automatic flange lubrication equipment, resilient wheels, special wheel profiles, and other noise mitigation measures shall be installed on the vehicle to ensure that wheel squeal in curves does not exceed 78 dBA.

Noticeable pure tones are not permitted.

8.7.3 Ride Quality
For any single station to station run (not including dwells), RMS accelerations between 1 and 80 Hz shall fall below the levels outlined in Evaluation of Human Exposure to Whole-Body Vibration, ISO 2631 for one (1) hour exposure to the Reduced Comfort Boundary.

8.7.4 Interior Lighting
Vehicle interiors shall be designed with lighting fixtures that are secure, rattle free, and vandal resistant. Fluorescent tubes, or other powered fixtures, shall be inaccessible to passengers. Diffusers shall be provided of a material that is shatterproof. Illumination levels, as follows, shall be consistent and shall be measured with all light diffusing panels in place.

- The average intensity of the illumination within the car at an elevation of 33 to 66 in above the floor shall be at least 30 Footcandles at rated voltage.
- The light intensity at the floor throughout the vehicle, in the passenger aisles, steps and articulation section, shall not be less than 20 Footcandles.
- The average light intensity at the car entrances and exits inside the vehicle within 20 in of the doors shall not be less than 20 Footcandles at the floor.
- Emergency exit lighting shall illuminate the path from each vehicle emergency exit. Such lighting shall be at least 5 Footcandles and shall be powered from the vehicle battery.
It shall be possible for only authorized personnel to turn off interior lights.

8.7.5 Interior Design

Light rail vehicles, their systems and sub-systems shall be designed in such a way as to be easy to use, simple, efficient, reliable and safe for operators, passengers, and maintenance personnel. Establishing a good man-machine interface through ergonomic design is well established and refined, especially in the military environment, where the standard MIL-STD-1472F – Department of Defense Design Criteria Standard - Human Engineering, establishes detailed and easily understandable criteria. These design criteria shall be the basis for the absolute minimum ergonomic requirements for the light rail vehicle design.

For ergonomic design purposes, the vehicle shall be able to accommodate as a minimum the range of passengers, operators, and maintenance personnel ranging from the US 5th percentile female to the 95th percentile male. Current US anthropometric details to be used are in Architectural Graphic Standards, 10th edition – Section 1: Human Dimensions. Where these details are insufficiently comprehensive, MIL-HDBK-759C – Human Engineering Design Guidelines, Section 5.6, Tables 16a though 16f, General Forces shall be used.

For specific assistance in cab area design, ISO 13407:1999 – Human-Centered Design Processes for Interactive Systems shall be used.

Corridors and aisles shall have a height of at least 80 inches. The main aisle width shall be at least 34 inches to permit access by a wheelchair from all passenger doors. All standing passengers shall have access to vertical stanchions or handholds. Stanchions shall not be located in the center of aisles. The window area shall be maximized to emphasize a feeling of openness.

The interior shall have no sharp corners or inaccessible areas at floor level and shall be easy to clean and maintain. Handholds, lights, air vents, armrests, and other interior fittings shall appear to be integral with the vehicle interior. There shall be no sharp, abrasive edges, corners, or surfaces, and no hazardous protuberances.

Interior panel material shall permit easy removal of paint, greasy fingerprints, and ink from felt tip pens, etc. Materials shall be strong enough to resist everyday use and shall be resistant to scratches and markings. Use of visible fasteners shall be minimal and any interior mullion trim, moldings, and trim strips shall match the adjacent panels/walls.

Seats shall be similar to seats in existing vehicles and shall be easily maintained and resistant to vandalism.

The vehicle floor shall be covered with slip-resistant rubber flooring material similar to that used in existing vehicles. The floor covering material shall comply with all applicable requirements of ADA Standards for Accessible Design for visibility and friction coefficients. Colors for the floor covering and step nosing shall complement the vehicle’s overall interior design.

8.8 Reliability

On the assumption that the Vehicle Supplier’s specified routine maintenance is performed on the various vehicle sub-systems and components, the following reliability requirements shall be met:
Table 8-9: Reliability Requirements

<table>
<thead>
<tr>
<th>System</th>
<th>Mean Distance Between Component Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion System</td>
<td>90,000 miles</td>
</tr>
<tr>
<td>Friction Braking System</td>
<td>90,000 miles</td>
</tr>
<tr>
<td>Passenger Doors</td>
<td>90,000 miles</td>
</tr>
<tr>
<td>HVAC System</td>
<td>180,000 miles</td>
</tr>
<tr>
<td>Couplers and Bumpers</td>
<td>180,000 miles</td>
</tr>
<tr>
<td>Trucks and Suspension</td>
<td>180,000 miles</td>
</tr>
<tr>
<td>TWC, AVL, and Events Recorder</td>
<td>180,000 miles</td>
</tr>
<tr>
<td>Video Monitoring, Communications, PA and Pass. Info.</td>
<td>180,000 miles</td>
</tr>
<tr>
<td>Auxiliary Power Systems</td>
<td>225,000 miles</td>
</tr>
<tr>
<td>Lighting (except bulbs)</td>
<td>450,000 miles</td>
</tr>
</tbody>
</table>

8.9 Maintainability

The Mean Time to Repair (MTTR) a vehicle fault shall not average more than 1.5 hours per fault, including diagnostic time.

The following Table 8-10, Weighted Average of MTTR Values, shall indicate the weighted average of the MTTR values for the specified subsystem elements:

Table 8-10: Weighted Average of MTTR Values

<table>
<thead>
<tr>
<th>System</th>
<th>Mean Time to Repair (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion System</td>
<td>1.5</td>
</tr>
<tr>
<td>Friction Braking System</td>
<td>1.8</td>
</tr>
<tr>
<td>Passenger Doors</td>
<td>0.75</td>
</tr>
<tr>
<td>HVAC System</td>
<td>2.0</td>
</tr>
<tr>
<td>Video Monitoring, Communications, PA and Pass. Info.</td>
<td>1.0</td>
</tr>
<tr>
<td>Couplers and Bumpers</td>
<td>2.5</td>
</tr>
<tr>
<td>Trucks and Suspension</td>
<td>1.5</td>
</tr>
<tr>
<td>TWC, AVL and Events Recorder</td>
<td>1.0</td>
</tr>
<tr>
<td>Auxiliary Power System</td>
<td>1.5</td>
</tr>
<tr>
<td>Lighting</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Given the high level of street running in the Valley Metro LRT system, accidents involving collisions with motor vehicles are expected to be a regular occurrence. To minimize the resulting vehicle out of service downtime, the cab end of the vehicle shall be fitted with prefinished, easily replaceable, anticlimber bumpers and body panels. In the majority of collisions (minor to medium in severity), these features shall allow the operator to return the vehicle to revenue service in less than 24 hours.
Figure 8-1: Valley Metro Kinkisharyo LRV General Arrangement
Figure 8-2: Valley Metro Kinkisharyo LRV General Arrangement (continued)
Figure 8-3: Wheel Profile
Figure 8-4: Vehicle Static and Dynamic Envelope on Level, Tangent Track
Figure 8-5: Body Point Identification – Front
Figure 8-6: Body Point Identification – Length, Width, Centers

Source: ASHRAE Fundamentals Handbook – 2001, Chapter 8, Fig. 5
Figure 8-7: ASHRAE Summer and Winter Comfort Zones
THIS PAGE INTENTIONALLY LEFT BLANK
9.0 OPERATIONS AND MAINTENANCE FACILITIES

9.1 Introduction

Valley Metro’s Operations and Maintenance Center (OMC), and the Operations Control Center (OCC) are located at 605 S. 48th Street, Phoenix, Arizona.

The purpose of this chapter is to establish the guidelines and general criteria for the design of future light rail transit (LRT) system’s maintenance, operations, or storage yard facilities being contemplated as part of the system expansion.

9.1.1 Site Selection

Site selection criteria shall consider the following:

- Zoning and Land Use Compatibility
- Compatibility with the of the applicable municipality General Plan
- Environmental Site Characteristics
- Archaeological Site Characteristics
- Noise Impacts of the Proposed LRT Use
- Right-of-way Boundaries, Ownership and Cost
- Site layout, Circulation and existing Buildings and Structures
- Capacity and future Expansion
- LRV access and its impacts
- Employee Access and Impacts
- Cost – Property, Relocations/Damages, Number of Relocations Required; and
- Total Costs

The facility site shall be ideally located near the endpoint of the expanded LRT system and shall be located as close to the main line LRT tracks a possible. The site shall be rectangular and sized to accommodate 50% of the system build-out fleet size of LRVs to be assigned to the route. Existing public owned property shall be utilized if possible. Connections to existing railroad tracks are desirable but not required.

9.1.2 Maintenance of Equipment Shop (MOE)

The MOE shop shall be designed for staged construction to serve LRVs assigned to the facility with maintenance crews operating on a three-shift basis. The shop shall be designed to provide the flexibility to service LRVs in a variety of preventive, corrective and overhaul maintenance programs based on component change-out with limited component overhaul capabilities. Major component overhauls shall be accomplished by outsourcing.
The LRV design vehicle shall be an articulated, double-ended operating cab, low floor vehicle, approximately 93.0 foot long (90.3 Structural Design) each as further identified in Chapter 8, Vehicle. The LRVs are planned to be operated in one to three car consists.

It is intended that the operation of the LRT system shall be maintained and managed by Valley Metro staff. The MOE shall provide integrated offices for the Authority oversight staff and the contract operator.

The MOE shall include the following minimum general work areas.

- Component Repair Shops – Includes: truck repair shop, wheel shop, mechanical component repair shop, machine/sheet metal shop, pneudraulics shop, battery shop, parts cleaning shop, welding shop and electronics shop.
- Overhaul Tracks – A non-electrified overhaul track(s) with in-floor hoist system to provide capability for unscheduled repairs and overhaul of LRV trucks. This track and related work areas shall be provided with overhead crane system and jib cranes as needed.
- Corrective and Preventive Maintenance Trac ks – Electrified corrective and preventive maintenance tracks with pits and mezzanine platforms to provide the capability to maintain the LRV underside, inside and roof mounted equipment. Appropriate horizontal and vertical movement of materials and equipment.
- Wheel Truing – Provide a wheel-truing machine with a full LRV car length pit in advance of the machine on an electrified track.
- Paint and Body Shop – The body repair shop and paint booth shall each be in a separate enclosed area.
- Facilities Maintenance Shop – Provide a shop to support all facility maintenance.
- Central Storage – The MOE shop shall be the central receiving and storage point for the maintenance facility. Sufficient area shall be provided to accommodate the central receiving and storage functions, with scheduled weekly replenishing of often used parts.
- Maintenance of Equipment General Office Area
 - Operations General Office Area – An office and welfare area for the Authority staff shall be provided. The office areas shall include conference rooms, office support equipment (fax, copiers, paper storage, printers, etc.) office storage, etc.
 - Welfare Facilities – Welfare facilities for all staff includes locker areas, restrooms, lunchrooms, etc.
 - Mechanical, Electrical, Communication Rooms – Provide adequate mechanical, electrical, communication and other support equipment rooms.
 - Shop Traction Power Substation – Provide a separate shop substation to serve the shop OCS system. Each electrified track within the shop is to be provided with OCS disconnect switches and related safety devices
 - Operation Control Center – Provide rooms for the train control staff. The facility shall be self-sufficient and secured to be accessed by authorized personnel.
Parking for Authority Vehicles – Provide parking for all MOE and MOW sites related highway vehicles and on-site motorized carts.

Miscellaneous Items – Provide for scrap and waste storage, compressed gas storage, oil water separator(s), waste oil, grease storage tanks and other non-specific support functions.

9.1.3 Service and Cleaning Area (S&C)

The S&C area will provide daily/periodic interior LRV car cleaning capabilities, inspection of the underside and pantograph and shall include provision for the following:

- Sanding – A pneumatic sanding system with fill stations located adjacent to each LRV sand container. A sand tower with pneumatic loading devices.
- Inspection station – Provide a one-half LRV pit with a roof level inspection station on one track. Consider utilizing a CCTV system in lieu of a roof level platform.
- Cleaning platform – Provide a LRV car floor level center platform equipped with slop sinks, cleaning supply storage, refuse containers, sanding fill stations, car cleaner supervisor office, and related equipment. The platform shall accommodate four LRVs per track for system build-out and be capable of staged construction, be accessible by motorized carts to remove refuse and deliver supplies.
- Inspection office – An MOE car inspection supervisor office near the inspection pit/roof platform.
- Welfare facilities – Rest rooms located adjacent to the S&C platform to reduce the need for employees to utilize the facilities in the MOE shop.
- Oil Water Separator (OWS) – Connect inspection pit to an OWS system.
- Miscellaneous – Provide for refuse containers and storage containers as needed.
- Parking – Provide for parking of MOE motorized carts and highway vehicles as needed to support the S&C area.

9.1.4 LRV Washer

Provide an enclosed, one direction, and recycling LRV train washer in line with the S&C tracks. The LRV washer shall be designed for minimum water usage and passage of a LRV consist without engaging the washing mechanism. Access for delivery trucks and adequate storage for day-to-day materials and chemicals shall be included within the washer enclosure.

9.1.5 LRV Storage and Yard Tracks

Provide a yard track system that will support initial operations with provisions for 50% of the build-out of the LRT fleet projections for the specific route. The trackage and special trackwork will be a combination of manual and remote controlled switches. Remote controlled switches shall be controlled from the Operation Control Center. In general the track layout shall include the following:

- Access – Provide a two-track yard lead with crossovers, as needed for access to/from the Main Line LRT system to the MOE shop.
MOE shop set-off track – A track near the MOE shop to store one LRV unit.

MOW Shop leads – Tracks leading directly into the MOE shop. MOE shop lead tracks shall be protected by derails and blue flag system.

S&C Area – Two tracks leading to the S&C service platform and LRV washer. The tracks shall provide for queuing of LRVs into the S&C tracks.

LRV Washer – A single track in line with the S&C tracks but prior to the yard storage tracks and Yard Loop track. The track shall be of sufficient length that a three vehicle train can enter tangent to the building.

LRV Storage Yard and related yard tracks – Tracks for overnight storage of LRVs. Alternating tracks shall have cart paths for motorized carts and small highway vehicles such as a pick-up truck.

LRV Shade Structure – Shade structures for LRVs shall be provided within the LRV storage yard.

Yard loop/MOE shop bypass track – A yard loop track shall provide the capability for LRVs to be operated around the yard without impacting MOE shop operations or access from the yard leads to the S&C area and LRV Washer. The yard loop/MOE shop bypass track shall be capable of accommodating LRV testing and commissioning.

Emergency Vehicle Access Road – Provide access for emergency vehicles to cross the middle of the storage yard.

Lead tracks to the Maintenance of Equipment (MOE) Building shall be of a length that vehicles entering the perimeter apron areas at the doors of the building shall be tangent.

The minimum tightest curve track allowed shall be a 100 foot radius.

9.1.6 Maintenance of Way Shop (MOW)

The MOW shop shall be designed to provide the flexibility to service track, systems and structural maintenance of the LRT system with the exception of station cleaning and landscaping which will be contracted out. The MOW facilities shall be capable of supporting a variety of preventive, corrective and maintenance programs based on component change-out with limited component overhaul capabilities. Major rehabilitation of the line is planned to be accomplished by outside contracts. The MOW facilities shall include the following:

- Maintenance of Way General Office Areas – An integrated office for the Authority oversight staff and contract operator MOW staff shall be provided.
- Track Shop – A shop to support the maintenance of track and special trackwork and store non-controlled day-to-day materials.
- Traction Power Shop – A shop to support the maintenance of traction power substations and the overhead catenary system and store non-controlled day-to-day materials.
- Signals and Communications Shop – A shop to support the maintenance of signals and communication systems and store non controlled day-to-day materials.
- Carpenter Shop – A shop to support the maintenance of fixed signage, stations furniture, other facilities and store non-controlled day-to-day materials.

- Machine Shop – A shop to support machine work as needed and store non-controlled day-to-day materials.

- Welding Shop – A shop to support all functions that need welding or metalwork and store non-controlled day-to-day materials.

- Fare Collection Shop – A shop to support the maintenance of fare collection equipment.

- MOW Controlled Storage – Provide inside secured storage for materials under the control of the MOW department.

- Exterior Secured Storage – Provide outside open storage for materials under the control of the MOW department but secured by fencing or within a general MOW compound.

- MOW Equipment Storage Tracks – Provides storage for rail mounted maintenance equipment. One track must be fitted to accommodate the unloading of LRVs from a semi-trailer.

- Parking for Authority/Contract Operator Vehicles – Secured parking for all MOW Authority vehicles within a compound.

9.1.7 Entry Station

The maintenance or storage facility site shall provide a 24-hour security monitoring point at the site entry. Additionally, a security position shall be provided at the MOE building to provide a security position during a single shift. The entire facility site shall be designed as a secured compound with limited access.

- Site Security Systems shall consider, but not be limited to the following; perimeter fence, closed circuit television cameras, employee identification/magnetic card access, remote controlled gates across the yard lead and an intrusion identification system.

9.1.8 Employee, Visitor and Authority Parking

Adequate parking shall be provided for all employees during the greatest shift change, visitors, and authority vehicle parking. Employee and visitor parking shall be provided near the MOE and MOW shop areas. Parking for Agency vehicles shall be provided in areas under the control of the MOE or MOW.

Provide security cameras and emergency phones in employee and visitor parking lots as necessary to provide coverage of the movement of staff within these areas.

9.1.9 Traction Power Substations

Provide an appropriate sized secure area for the yard traction power substation to support 50% of the LRV fleet assigned to this route and an additional area for a future substation to support the required growth. Provide a separate appropriate sized substation to serve the MOW shop building. The substation may be within the MOE shop.
9.1.10 **Signal and Communication Houses**

Provide an appropriate sized secured area for the Signal house needed to support remotely controlled switches – See Chapter 11, Signaling, and Chapter 12, Communications.

9.1.11 **Internal Road Circulation System**

Provide an internal circulation road system that includes the following:

- Site Entrance Road – A paved two lane main roadway that provides access into the site and to the main parking areas near the MOE and MOW shops, the MOE Central Stores Receiving location, the MOW controlled storage areas. The entrance road shall accommodate semi-trailer deliveries including LRV deliveries and emergency vehicles.

- Paved Service Road – A secured paved roadway to provide access to ancillary areas such as Storage Tracks, S&C area, the LRV washer, traction power substation, signal and communication houses, MOW compound etc. The secured paved roadway shall restrict access to areas that should normally be utilized by contract operator staff and special deliveries of supplies. Road may be sized and signed for one-way traffic. Only authority motorized carts, highway vehicles and non-authority delivery trucks and emergency vehicles would have access to this roadway.

- Unpaved Service Road – A secured unpaved roadway to provide access to ancillary areas such as Storage Tracks, S&C area, the LRV washer, traction power substation, signal and communication houses, MOW compound etc. The secured unpaved roadway shall restrict access to areas that should normally be utilized by contract operator staff and small emergency vehicles.

9.1.12 **Utilities**

Provide all utilities needed for the maintenance facility site.

9.1.13 **Landscaping**

Provide landscaping in accordance with the applicable codes and Urban Design guidelines.

9.1.14 **Miscellaneous Structures**

Provide design solutions for the miscellaneous structures that may be needed for the maintenance facility site. The miscellaneous structures shall include but not be limited to the following:

- Retaining Walls
- Bridges
- Drainage structures
- Catenary pole foundations
- Light Poles
- LRV Shade Structures
9.1.15 **Historical Trolley (Future)**

Provide space for a future Historical Trolley Storage Tracks and Maintenance Barn. Provision shall be made for two tracks and a structure to store two trolleys approximately 40 feet long.

9.1.16 **Special Site Requirements**

Meet the special and unique site requirements as needed for the selected site.

9.1.17 **Items Not Included At Future Maintenance Facility Sites**

The following items are not included at the maintenance facility site:

- Diesel Fuel/Propane/Gasoline Storage – Fueling of highway vehicles will be accomplished at local gas stations. Small quantities of diesel fuel/gasoline/propane will be stored in HAZMAT containers near the MOE/MOW shop to support small equipment.
- Station Cleaner/Landscape Support – Contractors from their own facilities will provide Station cleaning and landscape support.
- LRT Transit Police – Transit police headquarters and support areas shall be provided from a location to be determined.

9.1.18 **Codes, Ordinances and Guidelines**

A list of codes, ordinances, guidelines and standards applicable for the facilities are listed below and need to be amended per local jurisdiction amendments and to incorporate the latest editions of the codes at time of construction.

- International Fire Code (IFC)
- Phoenix Building Code
- ICC/ANSI A 117.1
- ADA Standards for Accessible Design
- IEC – Phoenix Energy Conservation Code
- IMC – Phoenix Mechanical Code
- ICCPC – Phoenix Performance Code
- Uniform Plumbing Code Phoenix Amendments, 1 Table 11-1
- National Electrical Code/NFPA-70
- ASME A18.1 Safety Code for Platform Lifts and Stairway Chairlifts
- Governing Municipality - Administrative Provisions
- Federal OSHA requirements
10.0 Traction Power

10.1 General

The purpose of this chapter is to establish the standards and design policies for the traction power supply and distribution system for all LRT operations on Valley Metro LRT Projects.

The light rail vehicles will be propelled by electric traction motors driving steel wheels through the appropriate gearing. Electric traction power shall be supplied to the vehicle from wayside substations through an overhead contact system (OCS) distributing power through a contact wire installed over each running track. A pantograph collector on each car shall maintain contact with the wire. Both running rails of each track shall be used for the traction power negative return, except at crossovers or other locations as determined.

Power shall be supplied from the substations through a positive cabling system to the traction power distribution system, and returned to the substations through a negative cabling system from the running rails and/or impedance bonds.

The traction electrification system shall supply sufficient power to transit vehicles to provide safe, efficient, and continuous operations of the transit system. Design of the traction electrification system shall be coordinated with the electric utility companies who will provide primary power for the system. Electric power shall be supplied to Valley Metro LRT Projects from electric power utility companies, Arizona Public Service (APS) and Salt River Project (SRP). Partial design requirements for both utilities may be found at the following websites: www.aps.com and www.srpnet.com. Extensions into certain areas in the City of Mesa will obtain primary power from the City of Mesa Electric Utility. See the website at http://www.cityofmesa.org/utilities/electric/default.asp for further information.

The designer shall provide detailed feeder requirements including peak and RMS loads not later than 180 days prior to final design.

10.2 Requirements

The elements and requirements described in the following sections shall be included in the traction power supply and distribution system design:

10.2.1 Traction Power Substations

The traction power substation consists of all equipment between the interface point with the electric power utility and the interface point with the dc feeder system.

10.2.2 Utility Power Supply

The electric utility companies shall provide to each traction power substation power in the range 12,470 volts +/-3%, 3-phase, 60 Hz power circuits as primary service.
10.2.3 DC Feeder System

The dc feeder system includes the positive dc feeders from the traction power substation to the overhead contact system, the negative dc feeders from the substation to the rails, and any parallel underground feeders required to locally reinforce the overhead contact system electrical capacity. The system shall also include raceways, pull boxes, pad mounted TPSS bypass/disconnect switches, manholes, and associated appurtenances for the routing of the feeder cables.

10.2.4 Overhead Contact System

The Overhead Contact System (OCS) consists of the Overhead Conductor Subsystem and the Physical Structure and Support Subsystem. Feeder and bypass disconnect switches shall be part of the Overhead Conductor Subsystem.

10.2.5 Codes and Standards

All materials, apparatus and equipment, installation methods, and testing shall conform to or exceed the requirements of the applicable portions of the latest edition of IEC, ANSI, NEMA, NEC, NFPA, NESC, IEEE, UL, UBC, ICEA, EIA, ASTM, and AREMA. Other local and state codes may also apply. The system shall be designed in compliance with industry standards, and the most stringent of these codes. Where there is conflict between theses codes and standards and the requirements of this Chapter 10, the more stringent shall apply.

10.2.6 Systems Integration

The traction electrification system design shall be coordinated with the Operations Plan, the LRT system civil work, the Train Signaling System and other systems disciplines (i.e. vehicles and communications). The Designer shall implement a systems integration design program in accordance with the requirements of Chapter 21, System Integration.

10.2.7 Ambient Conditions

The Phoenix Metropolitan area is located in the Sonoran Desert. The design shall consider the special conditions associated with this desert climate. Refer to Chapter 1, General, for the applicable climatological conditions.

10.3 System Voltages

The following shall constitute the basis for traction electrification system design and rating:

- Nominal DC Bus Voltage: 825 VDC
- Nominal OCS Voltage: 750 VDC
- Maximum OCS Voltage During Regeneration: 900 VDC
- Minimum Vehicle Operating Voltage: 525 VDC
- Maximum Rail to Ground Potential: 50 VDC (70 VDC under contingency operation)
During normal system operations, the minimum allowable line voltage to the vehicle is not to be less than approximately 625 VDC. Voltage at the vehicle pantograph must typically be at least 625 VDC to ensure full vehicle performance. Normal revenue operations shall be possible with one substation out-of-service, providing adjacent substations are operating normally.

10.4 Basis for Substation Location, Spacing, and Rating

The traction power substation (TPSS) locations shall be optimized with respect to system safety, system performance, system efficiency, right-of-way availability, substation site availability, stray current control, life cycle cost, and interconnection to the utility network. The Designer shall perform a Traction Power Simulation/load flow analysis during Preliminary Engineering to locate and size traction power substations to meet the operational requirements defined herein. The Traction Power Simulation/load flow analysis shall be performed again during Final Design in order to verify all assumptions and validate the results of the preliminary analysis.

A typical system configuration design provides mainline substations at approximately 1.0 to 1.5 mile intervals rated in the range of 2.0 to 2.5 megawatts depending on the configuration necessary to support service levels under all contingencies. Typically, substation spacing at the ends of lines shall be reduced to nominally one quarter to one half the normal spacing to accommodate stub-end feeding of the OCS, and to cater for the loss of an end-of-line substation. However, the location shall be verified through the Traction Power Simulation/load flow analysis. A dedicated substation shall be required to service yard track loads at future Maintenance and Storage Facilities. A dedicated substation within the Maintenance of Equipment (MOE) building shall be required to service the shop loads.

The Mainline and Yard substations shall be rated uniformly to simplify maintenance issues and the management of spare parts.

The substation locations and equipment ratings shall permit operation under all anticipated conditions without exceeding specified performance ratings of the traction power supply and OCS system elements. Exceeding specified ratings shall pertain to any and all detrimental effects that result in diminished performance, shortened life, or physical damage of the traction electrification system elements. The traction electrification system equipment and conductor ratings shall be based on computer simulations of the LRT operations. Train performance data will be provided by Valley Metro for these simulations. Under normal and contingency operations, the system voltage shall be maintained within acceptable levels for LRV operation, and the equipment and conductors shall operate within thermal limits prescribed by industry standards and manufacturer recommendations.

10.4.1 Normal Operation

The spacing and rating of the mainline TPSS shall be designed so that adequate power is supplied to the system, with all substations operating, to maintain rated LRT operating performance during peak-hour LRT operating conditions at minimum 6-minute headways, and 4-minute headways in Valley Metro designated CBD and special event areas. This shall include simultaneous starting of two, three-car trains at AW2 and AW3 loading at any passenger station or midway between substations.
The Yard and MOE substations shall be rated to provide adequate power to maintain normal operations of the light rail vehicles within the Yard and MOE facilities as defined under the operations plan.

10.4.2 Contingency Operation

Contingency operation of the mainline traction electrification system occurs when any one traction power substation is out-of-service on the mainline. The spacing and rating of the mainline TPSS shall be designed so that adequate power is supplied to the system to maintain operation of the LRT during peak-hour LRT operating conditions. This shall include simultaneous starting of two, three-car trains at AW2 and AW3 loading at any passenger station or midway between substations in the outage zone. The system shall provide a minimum of 525 VDC on the mainline during contingency operations.

In order to ensure LRT operation during contingency scenarios, the traction electrification system and light rail vehicle designs shall be coordinated. Forced Reduced Performance (FRP) of the LRV shall be defined to ensure adequate operations under substation outage conditions. The LRV activation voltage shall be 625 VDC, and the reduction of performance shall be in the form of a sliding limit on the maximum propulsion current. If the line voltage falls below 625 VDC, the motor current limit shall be lowered progressively at a rate of 0.5 %/volt. Consequently, at the 525 VDC level the propulsion current shall be limited to 50 % of its normal maximum value.

Under contingency operations, the dc feeder circuits and positive dc bus of the out-of-service substation shall remain in service to feed across section breaks. In the event that the positive dc feeders or bus are out-of-service, bypass-disconnect switches, if installed, shall be closed to bridge the two sections.

10.4.3 Assigned Weight and Capacity

See Chapter 8, Vehicle

10.4.4 Special Events Operation

Under Normal and Contingency Operations, the TPSS shall be located and rated to also satisfy the ridership and operational requirements associated with Valley Metro designated Special Events.

10.5 Traction Power Substations

10.5.1 General

The traction power substation consists of all equipment between the interface point with the electric power utility and the interface point with the dc feeder system. Each substation installation shall include utility metering equipment, ac switchgear, thyristor controlled transformer/rectifier unit, dc switchgear, positive and negative busbars, substation housing and foundation, grounding system, negative return system, protection system, auxiliary power supply system, a heating and ventilation system, NiCad batteries and charger, security system, surge arresters, and alarms and control. All substation components shall comply with applicable
NEMA standards. All substation equipment shall be listed by UL, CSA, or IAEC; UL listing may be accomplished by a UL Field Evaluation. In addition, the power conversion equipment and load elements shall be designed such that the voltage distortion levels conform to the requirements and guidelines of IEEE Standard 519 and the serving utility.

Substations shall be designed to minimize impact on the areas in which they are located and to be in compliance with the Urban Design Guidelines and the local city planning department. Substation buildings may be purpose-built in-place buildings or pre-fabricated factory built buildings with all substation equipment installed at the manufacturer’s facility, as determined by Valley Metro. Substations shall be provided with one single 36 inch wide personnel access door, and one double personnel access door, each door 36 inches wide.

10.5.2 Substation Traction Power Equipment

10.5.2.1 Transformer/Rectifier Unit
All Mainline & Yard substations shall have one transformer/thyristor rectifier unit. The rectifier units shall be solid-state and connected in accordance with ANSI Standard C34.2. Mainline and Yard units shall deliver a 12-pulse, double-way output (ANSI C34.2, Circuit 31). Thyristor rectifier transformers shall be cast coil type and provided with multiple taps to allow compensation for utility supply voltage variations.

The OMC buildings and Yard substation shall be supplied with two primary AC feeds from two different utility substations. The feeders shall be connected via an automatic transfer switch (ATS) to provide primary power in the event of the loss of either of the primary feeders.

The MOE shop power unit shall deliver a six-pulse, double-way output (ANSI C34.2, Circuit 23). The MOE substation shall be powered from the primary MOE building electrical switchboard at 480 VAC.

The basis for transformer/rectifier rating shall be the extra heavy duty cycle defined as follows: after reaching a steady state temperature, the thyristor rectifier transformer shall run at 150% of its rated load for 2 hours. During this 2-hour period, five equally spaced loads of 300% shall be imposed on the unit for 1-minute duration each. At the end of the 2-hour cycle, a 450% load shall be imposed for 15 seconds. At the end of this duty cycle, there shall be no damage to the thyristor rectifier/transformer or any of its components.

The thyristor rectifier transformers shall be self-ventilated dry-type Class AA, suitable for indoor service. Solid state rectifiers shall be free-standing indoor-type metal-enclosed, and natural convection air-cooled. The transformer/thyristor rectifier units shall be rated extra-heavy traction rating class, in accordance with the above-defined extra heavy-duty cycle.

All substation equipment including the electronics shall be capable of operating at 100% capacity in an ambient temperature of 100º F.

10.5.2.2 AC Switchgear
The ac switchgear shall be metal-clad drawout–type. The breakers shall be 500 MVA class minimum, suitable for the available utility voltage and short circuit current.
10.5.2.3 **DC Feeder Circuit Breakers**
DC feeder circuit breakers shall be specifically designed for dc transit service and installed to provide isolation of OCS sections. The breakers shall be indoor, metal-enclosed, drawout, 800 VDC rated (1500 VDC maximum), single-pole, high-speed units capable of interrupting the maximum short-circuit current available.

Circuit breakers shall be equipped with digital protective relaying which provides direct acting instantaneous overcurrent “rate-of-rise,” and automatic reclosure relaying and provisions for transfer trip between substations. The protection shall open all breakers feeding a faulted section. At the substation, circuit breakers shall be used for all feeders. After three trips associated with a fault, a manual reset shall be required. Circuit breakers shall normally be operated by local controls under manual operation within each substation. Each circuit breaker shall be equipped with provisions for remote operation with SCADA. A local-remote transfer switch shall be provided in each traction power substation.

10.5.2.4 **Metering**
Each utility feeder line shall be provided with revenue metering in accordance with the requirements of the electric utility.

At a minimum, indicating meters shall be provided to display the following:

- ac line current
- ac bus voltage
- dc positive bus voltage
- dc feeder line current
- dc feeder voltage
- dc negative bus voltage (mainline substations and yard negative bus)
- dc leakage current (MOE Shop substation negative bus)

10.5.2.5 **Protection**
The substation design shall incorporate protective devices to mitigate damage to equipment and avoid hazards to personnel in the event of overloads, faults, and other abnormal conditions. As a minimum, the following protection shall be provided:

10.5.2.6 **Transformer/Rectifier Unit Protection**
- Overcurrent Relays (Phase and Neutral)
- Phase Sequence and Undervoltage Relay
- Surge Arresters on the Incoming Line
- Rectifier Surge Protection
- Transformer Winding Over-Temperature Relay
- Thyristor Rectifier Over-Temperature Protection
• DC Reverse Current Blocking Device. The reverse current protection shall protect the rectifier from a fault current fed from the dc line.

• All TPSS to include the filter capacitor bank with an equivalent capacitance not less than 0.02 Farad. Without filter capacitors the DC output voltage ripple, as measured by the total harmonic distortion, shall not exceed 2-1/2% RMS for loads ranging from 0 to 100% of the rated load of the substation. The design, which must be approved by Valley Metro, shall provide a filter capacitor design, including sizing, across the DC output to reduce voltage ripples. With filter capacitors connected across the DC output, the harmonic distortion following regeneration cut-off with the LRV in coast mode shall not exceed +/- 0.4% RMS. The design of the rectifier shall include DC filtering equipment to smooth the voltage ripple at low loading conditions.

10.5.2.7 DC Feeder Breaker Protection
• Instantaneous Trip - The dc feeder breakers shall clear overloads and faults, yet must be capable of sustaining short-time instantaneous loads, due to train starting, without nuisance tripping.

• Low-Level Fault Protection - Rate-of-rise relays shall be provided to detect low-level faults occurring remote from a substation. The devices shall discriminate between low-level remote faults and the inrush current of starting trains.

• Long-Time Overcurrent Protection - The rate-of-rise relay shall include a long-time overcurrent device set to protect overhead wires from overheating.

• Load Measuring - The load-measuring scheme shall prevent inadvertent closure onto a faulted line.

• Transfer Trip - Transfer trip shall open all breakers feeding a faulted section. This is not applicable for the Yard and Shop substations.

10.5.2.8 DC Fault Protection
DC Equipment Grounding and Ground Protection - The dc negative return shall be isolated from ground. Personnel and equipment protection shall be provided by a high-resistance ground protection negative ground devise.

10.5.3 Pad-Mounted Disconnect/Bypass Switch
Each TPSS shall be provided with a disconnect/bypass switch to permit isolation of the substation. The disconnect/bypass switch shall be outdoor type, single-pole, single-throw, no-load break, non-fusible air switches, with manual external handle operators. The switches shall be enclosed type, suitable for pad mounting. The design shall comply with the applicable requirements given in ANSI C37.34 and Z55.1, ASTM B187, NEMA 250, SG 5, ICS 1, and ICS 2. Switch indication and door open status shall be reported to the OCC via SCADA.

10.5.4 Substation Enclosure
All traction power substations shall be designed to meet basic safety and fire protection requirements. Traction power substations shall be considered as unoccupied (U-1) when referencing the Uniform Building Code for occupancy related requirements or in compliance with the authority having jurisdiction.
The basic requirements to be incorporated into the building design shall include the following:

- Emergency access to and egress from the substations shall be in accordance with local fire codes, the NEC and the applicable Uniform & International Building Codes.

- Emergency lighting and exit signs shall be in accordance with local codes, the applicable Uniform & International Building Codes and NFPA 130 - Standard for Fixed Guideway Transit and Passenger Rail Systems.

- Substations shall be provided with an automatic fire detection system and portable fire extinguishers. They shall comply with Chapter 38 of the Uniform Building Code and local codes.

- Substation access shall be monitored by a security system including CCTV coverage of all sides of the building. Entry by unauthorized persons shall be prevented by means of locks which match the existing Valley Metro keying system.

10.5.5 Substation Foundation

The design of the substation foundation shall conform to established civil and structural engineering practices, American Society for Testing Materials (ASTM), American Concrete Institute (ACI) standards, local codes, and requirements in Chapter 5, Structural. The substation foundation shall be structurally capable of withstanding the live and dead loads of the substation equipment and enclosure occurring during installation, operation, and maintenance of the substation.

10.5.6 Substation Grounding

As a principal goal, the traction power grounding system shall be designed to enhance safety both to personnel and to the overall system. The design of the grounding system shall incorporate measures to minimize any unsafe condition to system personnel, patrons or the community. Each substation shall be equipped with 2”-wide, ¼”-thick copper ground bus and the necessary cabling to a substation grounding grid.

Noncurrent-carrying metal enclosures or parts of alternating current equipment, including ac apparatus and rectifier-transformers, shall be securely connected to the ground grid.

The dc system shall be operated ungrounded. The traction power transformer secondary windings shall be isolated from ground.

Enclosures for traction power rectifiers, dc switchgear, and dc busways shall be installed insulated from ground, and each shall be connected to the substation ground grid through a high resistance ground fault detection system. The ground fault detection system shall detect enclosure “hot” as well as enclosure “ground” conditions. ANSI device 64 relays shall be used to detect faults or grounds associated with the dc equipment and enclosures.

Substations shall be equipped with a grounding system consisting of driven ground rods and conductor mats embedded in the earth. The ground mats shall be comprised of stranded 4/0 copper conductors connected by exothermic welds. The ground rods shall be ¾” diameter copper-clad steel and ten foot lengths with 5 foot extensions as necessary. These grid materials shall be resistant to corrosion by the earth’s soil chemistry.
Security fencing and walls around the substation enclosure require grounding considerations. Metal fences shall be connected to the grounding system and the grounding system shall extend three feet beyond the fence on all sides to mitigate the risk of step-and-touch potential to personnel outside the fence line.

Maximum step and touch ac and dc voltage shall not exceed the allowable values in accordance with the applicable requirements of the Institute of Electrical and Electronics Engineers (IEEE Standard 80). The grounding system design shall be coordinated with APS, SRP, City of Mesa Electric Utility, and any other utility service connection requirements at each traction power substation.

10.5.7 Ventilation
The substations shall include a heating, ventilation and air conditioning (HVAC) system to maintain the substation temperature at a level permitting the traction transformers and the rectifiers to operate at their design load cycle. The normal maximum temperature in the substation shall be 85º F. Two condensing units shall be provided and each unit shall be capable of providing the cooling requirements of the substation building. A single air-handling unit may be utilized with two separate evaporator coils. The condensing units shall be controlled by a duty cycle controller to equalize use of the two units. Temperature shall be controlled by digital programmable thermostats. The HVAC system shall be SCADA monitored (alarm/report) for high temperature, air handler failure, and condensing unit failure. Thermostats shall be SCADA interfaced for remote temperature control. The sizing of the HVAC system shall be based on maintaining an interior temperature of 85º F when the substation is operating at 60% of its nominal rated 100% load and maximum solar loading and environmental heat gain. Air balancing of the HVAC system shall result in a positive air pressure to help prevent dust and bugs from entering the substations.

10.5.8 Miscellaneous
10.5.8.1 Auxiliary Power
The power for station services (120/208 VAC) in and about the substations shall be provided. These loads include, but are not limited to, interior and exterior lighting, battery charger, convenience receptacles and climate control. An auxiliary transformer provided by the substation manufacturer shall provide the auxiliary power for the substation.

10.5.8.2 Uninterrupted Power System
Maintenance-free NiCad batteries and a battery charger shall be used as the power source and backup for the essential protection devices and substation equipment control for up to eight hours in the event of a utility power failure. The dc voltage shall be 125 VDC. A ventilation system to exhaust gases generated by the batteries shall be installed and shall be interlocked with the battery charger to shut down the charging system in the event of ventilation system failure.

10.5.8.3 Interior and Exterior Lighting
Provide LED indoor lighting, controlled by light switches wall-mounted inside the housing near the doorways. The design shall provide for minimum maintained lighting levels of 30 foot-candles vertical, average. Lighting shall illuminate the vertical surfaces of the equipment, such
as switchgear and transformer/rectifier units, and shall be located so as not to create a glare on
the front of the devices or meters. Locations of lighting fixtures shall be coordinated to avoid
interference with overhead raceways or other major wiring and shall not be directly above
switchgear, rectifiers, or transformers.

Outdoor lighting type shall conform to the requirements of the authority having jurisdiction.
Lighting shall be controlled with photocells. At a minimum the lighting design shall provide a
minimum illumination level of two foot-candles at ground level or as required by the local
authority having jurisdiction. The lighting levels shall be attained with not more than three
fixtures mounted on each exterior wall. Address lighting is required in some cities.

10.5.8.4 Emergency Lighting
Substations shall be provided with emergency lighting connected to the uninterrupted power
system. A relaying device shall be arranged to energize the lamps automatically upon failure of
the ac power.

Sufficient fixtures shall be provided to illuminate the area as required by code(s).

10.5.8.5 Convenience Outlets
Not less than four duplex convenience outlets shall be conveniently located around the interior
walls of the substation. Two 20-Amp duplex outlets shall be provided and they shall be
separately circuited. One is to be located on the wall behind the switchgear and rectifier to
permit use of a heavy-duty vacuum cleaner or up to 1½-horsepower portable air compressor;
the second shall be located on an exterior wall of the substation and shall be waterproof and
lockable to prevent unauthorized use of power from the exterior power outlet.

10.5.8.6 Monitoring and Alarm System
The traction electrification system shall be entirely self-protecting and equipped with local
monitoring indications and provisions for Supervisory Control and Data Acquisition (SCADA).
When installed, the system shall enable monitoring of equipment status and alarms, and other
control functions as directed by the Operations Control Center. Substation circuit breaker
lockouts shall not be automatically reset by the SCADA system.

A smoke detector system shall be provided within the substation. The smoke detection system
shall be annunciated locally and remotely.

The substations are normally unattended, and the design shall provide reasonable protection
against intruders and vandalism. A motion detector shall be provided on each entry door. Any
intrusion shall be made immediately known to the OCC. Each side of the building shall be
monitored by a CCTV camera.

10.5.8.7 Safety and Maintenance Equipment
An emergency eye-wash unit shall be provided, suitably located inside each substation
enclosure.

Two portable fire extinguishers shall be provided in each substation enclosure.
Separate test cabinets shall be provided in each substation for the testing of draw-out ac and dc circuit breakers.

The main negative bus of each traction power substation shall be connected to the return negative bus through a shunt for current measurement purposes.

10.5.8.8 Working Space
Working space is an area free of obstruction in front of the meters, service panels and electric equipment, which provides safe access to all electric equipment and metering. Adequate working space shall be provided within the substation enclosure, as prescribed by equipment manufacturers and code requirements.

10.5.8.9 Emergency Trip Switch (ETS)
Emergency trip switches shall be provided next to each personnel exit within the substation enclosure. One ETS shall be provided on the exterior of the building next to the main entrance door. The exterior ETS shall be protected from unauthorized access with a “Knox” box. The “Knox” boxes shall be dual-locked. The top lock shall be keyed for the local fire department and the bottom lock shall be keyed for Valley Metro.

10.5.8.10 Work Table
A combination work table/cabinet shall be included against the wall within the substation. Shelving and cubbyholes shall be included beneath the work table for the storage of binders, drawings, and small tools.

10.5.8.11 Telephone and Data
A telephone shall be installed within the substation for use by authorized personnel (refer to Chapter 12, Communications). The telephone service shall be limited to calls within the transit system telephone network and allow for 911 calls. Data access providing TCP/IP connectivity via 10/100/1000 Base-T Ethernet ports shall also be provided within the substation for use by authorized personnel.

10.5.8.12 Utility Power Supply
The electric utility companies shall provide to each traction power substation 3-phase, 60 Hz power circuits as primary service. The utility power will be supplied in the range of 12,470 Volts +/- 3%. The maximum current shall be as determined by the serving electric utility company without requiring a dedicated service. If necessary, alternative primary service voltages for primary power distribution to the traction power substation shall be evaluated during final design and shall be coordinated with the electric utility company. The evaluation shall determine the most cost-effective investment and lowest annual operating cost that will provide adequate power quality and reliable service to the LRT system.

A single 3-phase feeder shall serve each mainline substation. The utility feeder cable design and installation shall be coordinated with the appropriate electric utility company for each substation. Electric utility company approval is required for shop drawings of the ac gear and service entrance section (SES). The electric utility company requires that necessary clearances are met in front and rear of SES cabinets. The serving electric utility company generally provides the ac supply cables for primary metering, metering equipment and terminations, and makes the connections to the traction power substation meter.
Electrical fault detection and protection, including surge protection devices, for the traction electrification system shall be coordinated with the respective electric utility company for each point of service.

The ac supply feeders shall be selected in cooperation with the utilities. The primary criteria is as follows:

- The feeders for adjacent substations are to be from different utility substations in order to reduce the probability of a utility power failure affecting adjacent dc substations. If separate utility substations are not feasible then no more than one traction power substation shall be fed from a common utility transformer or bus.
- Also, no electric utility feeder shall supply more than two traction power substations, and these two substations shall not be adjacent to each other.
- A single utility substation transformer shall feed no more than three traction power substations in order to reduce the probability of LRT service interruption during a utility transformer failure.

Conduits, ducts, manholes, and cableways shall be provided for the ac supply cables from the traction power substation to the utility. The cableway requirements shall be coordinated between Valley Metro and the electric utilities.

The ac power supply for each substation shall be metered at the substation. All efforts shall be made to procure a beneficial billing rate. Valley Metro shall coordinate with the electric utility companies, their Board of Directors (for SRP), and Arizona Corporation Commission (for APS), and any local jurisdiction that provides electrical power, to obtain the most favorable rate schedule and tariffs possible to maintain safe, secure and reliable electric service required for the LRT system.

10.6 DC Feeder System

10.6.1 General

The dc feeder system includes the positive dc feeders from the traction power substation to the overhead contact system, the negative dc feeders from the substation to the rails or impedance bonds, and any underground along-track parallel feeders required to locally reinforce the overhead contact system’s electrical capacity. The system shall also include raceways, pull boxes, manholes, and associated appurtenances for the routing of the feeder cables.

Feeder conductors shall be insulated, conform to applicable industry standards (ICEA, NEMA, IEEE, UL, etc.), and be suitable for both wet and dry locations. The raceway shall be underground and the design of the ductwork, the embedment depth, and the manhole spacing shall be in accordance with the NEC requirements. The routing of the raceways and ductbanks and locations of manholes and handholes shall be coordinated with the civil and trackway design.
10.6.2 Cables

DC traction power feeder cables shall be insulated, non-shielded, single conductors suitable for use in wet or dry locations and rated at not less than 2,000 VDC, 90°C conductor temperature for normal operation, 130°C for emergency operation, and 250°C for short-circuit conditions. The conductors shall be copper, conforming to ASTM B189 material with class D or G stranding, conforming to ASTM B8, with EPR insulation and low smoke jacket.

Feeders shall be standardized on 750 kcmil for the positive circuit and 500 kcmil for the negative circuits. Multiple conductors for different amperages shall be used. The cables shall have sufficient conductivity to maintain traction power voltage levels at the required level. Traction power feeder cables shall be sized to operate at rated insulation temperature during normal operating conditions.

Traction power cables connecting dc feeder breakers to the overhead contact system and from running rails or impedance bonds to the negative bus shall be sized to accept maximum overload and short-circuit currents with a temperature rise not to exceed safe insulation design limits of the cables. The appropriate number and size of cables shall be determined in conjunction with the traction power system analysis.

The positive traction power cables shall be installed in dedicated positive conduits and positive manholes. The negative traction power cables shall be installed in dedicated negative conduits and negative manholes. The positive conduits and negative conduits may be run in common ductbanks but must be separated when terminated at positive and negative manholes.

Insulated feeder conductors shall be protected against switching surges and lightning.

No cable splices shall be permitted.

10.6.3 Raceways

Feeder ductwork shall be underground and consist of Schedule 40 PVC conduit encased in concrete. Design factors of ductwork such as conduit size, maximum cable pull tension, maximum total angular turn; minimum embedment depth below grade, manhole spacing and duct gradient shall be in accordance with NEC requirements. Spacing between feeder manholes shall not exceed 400 ft. Locator wire, in accordance with Valley Metro standards shall be used to identify feeder ductwork. Concrete encasement shall contain red dye on the top surface of the concrete. Concrete encasement of feeder or communication ductbanks is not required under the substations; in lieu of concrete encasement, Schedule 80 PVC or PVC coated GRS conduit can be used. 90° bends shall have a minimum 5-foot radius.

Feeder ductwork shall be run as directly as practicable and located to avoid conflicts with foundations, piping and other similar underground work. Risers consisting of conduit shall be provided at feeder connections to the overhead contact system.

Manholes, handholes and pull boxes shall be located to facilitate installation of the cables. Feeder manholes and/or pull boxes shall be located just beyond the ground grid and then every 300 ft. to 400 ft., and at 90° horizontal bends where the length beyond the bend is greater than 150 ft. The selection of a manhole or a pull box shall be on a site-specific basis. The number of
ducts to be installed shall have one spare duct per circuit to permit additional or replacement cables to be pulled.

Conduit stub-ups or risers to OCS poles shall be through concrete encased PVC coated GRS or Schedule 80 PVC conduits. One spare conduit shall be provided.

10.7 Overhead Contact System

10.7.1 General

The Overhead Contact System (OCS) consists of the Overhead Conductor Subsystem (OCSS) and the Physical Structure and Support Subsystem.

The Overhead Conductor Subsystem consists of the conductors, including the contact wire and supporting messenger wire (where used); in-span fittings; insulation; jumpers; conductor terminations; and associated hardware located over the track from which the vehicle draws power by means of direct physical contact between the pantograph and contact wire. The OCSS shall provide for satisfactory current collection under all operating conditions.

The Physical Structure and Support Subsystem consists of foundations, poles, guys, insulators, brackets, cantilevers, and other assemblies and components required to support the OCSS in the appropriate overhead configuration. The support system shall support the OCSS in accordance with allowable loading, deflection, and clearance requirements. The OCS supports throughout the system shall incorporate double insulation.

Traction power shall be distributed by the OCS, which shall consist primarily of sections of auto-tensioned (constant tension) simple catenary and single contact wire, and sections of fixed-termination (variable tension) simple catenary and single contact wire. The selection between the different configurations of the OCS is dependent on factors such as aesthetics, vehicle speed, operations, Economics, local conditions, and the environment.

Where possible, the system shall consist of a Low-Profile Simple Catenary Auto-Tensioned system (LPSCAT). The contact wire shall be supported from a messenger wire by means of hangers. Center poles located between the tracks when space permits shall support the overhead contact system. At locations such as crossovers, turnouts, track sidings, street intersections and restricted rights-of-way, side poles may be used as required.

Underground along-track parallel feeders shall be utilized where the capacity of the overhead contact system cannot satisfy the electrical load requirements. Underground along-track parallel feeders shall typically be utilized to reduce voltage drop and increase the system capacity.

10.7.2 Sectionalization

Electrical continuity of the OCS sections shall be provided with disconnect switches. At the substations, the OCS shall be sectionalized to provide isolation of each electrical section. An arrangement providing continuity and flexibility in operation of the system, while any substation or OCS section is out of service, shall be incorporated. In addition to sectionalizing at the substations, the OCS shall be sectionalized at crossovers or other special trackwork locations, and in the yard, to provide for OCS section isolation and operation around out-of-service tracks.
The MOE building shall include insulators and switching at the door openings for energized tracks. The switching shall accommodate opening and closing of the doors. Roll-up type doors shall require an OCS door bridge isolated on each side with section insulators. Doors that allow continuity of the OCS through the doorway shall require one section insulator installed outside the doorway above the insulated joints. Circuit breakers and disconnect switches shall provide the capability to sectionalize the power feed to the OCS as required. Pole-mounted disconnect switches shall be installed at special trackwork locations to facilitate bypass feeding of crossovers and turnouts during outage conditions.

The design of section breaks shall utilize an insulated air-break or insulated overlap. Bidirectional Section Insulators shall be used to avoid arcing between the LRV pantograph and OCS in the event of a reverse operation. At double-track locations, the air-break/overlap shall be applied to both tracks. Mechanical section insulators shall be used only at special trackwork locations and in the Yard/OMC.

Jumper cables shall maintain electrical continuity at special trackwork locations where it is necessary to have a physical separation in the OCS. At locations where jumper cables are used to provide full-feeding electrical continuity, they shall equal the electrical capacity of the OCS circuit capacity.

10.7.3 Disconnect Switches

Disconnect switches shall be manually-operated no-load break type, designed for dc transit systems, and rated for the system voltage and anticipated maximum current loads. Each feeder circuit shall be controlled by a disconnect switch. The disconnect switches shall be hot-stick operated for street running track. The disconnect switches for the Yard or in exclusive fenced rights of ways shall be equipped with operating handles. In both conditions, provisions for tagging and padlocking of the operating rods shall be made. Disconnect switches shall be mounted on the OCS poles. The switch-operating positions shall be uniform throughout the LRT system to minimize operating errors, and the positions shall be clearly marked at the operating handle.

10.7.4 OCS Configuration

Within street-running areas, the OCS configuration shall be low-profile simple catenary. The system height at supports shall be 24”. At other locations on the mainline, the OCS shall use a 36” to 48” (nominal 42”) system height and supports shall be styled in a manner similar to the low-profile catenary. Auto-tensioned single contact wire can be used for cross-overs and shall be implemented on the mainline only when deemed necessary to satisfy urban design considerations; at other locations auto-tensioned simple catenary shall be used. Underground along-track parallel feeders (negative and positive) shall be implemented and connected to the OCS at frequent intervals when necessary to supplement the capacity of the single contact wire system.

In vehicle storage and maintenance facility areas, the single contact wire configuration shall be utilized where it is electrically sufficient.

Low-Profile and/or Simple Catenary Auto-Tensioned System (LPSCAT & SCAT) shall be utilized on the mainline, as approved by Valley Metro. Simple Catenary Auto-Tensioned system
heights (distance between the contact wire and the messenger wire) shall be 36" to 48", as approved by Valley Metro. The LPSCAT system height shall be 24". Both the SCAT and LPSCAT shall consist of a messenger wire supporting a contact wire by means of hangers. The conductors shall be tensioned by means of counterweights. The conductors shall be supported from single or back-to-back bracket arms attached to poles, and from cross-spans and pull-offs. The poles shall be painted or galvanized tapered tubular and/or decorative tubular type. Balance weight anchor poles shall be internally weighted and calibrated to a common level where a viewing window (sight glass) shall be provided.

A Single Wire Auto-Tensioned system (SWAT) may be used at special trackwork areas when required due to visual impact and urban design considerations, as approved by Valley Metro. The SWAT system shall consist of a contact wire supported from single or back-to-back bracket arms attached to poles, cross-spans, and pull-offs. At special trackwork areas, the OCS shall be auto-tensioned by counterweights. The poles shall be tapered tubular or decorative tubular type. Underground along-track parallel feeders shall be implemented and connected to the OCS at frequent intervals for SWAT configurations on the mainline as necessary and determined by traction simulations.

A Single Wire Fixed Tension system (SWFT) may be used in the yard and maintenance shop areas, where it is electrically sufficient, as approved by Valley Metro. The SWFT has a single contact wire that is supported by means of single or back-to-back pole-mounted cantilevers, bracket arms, cross-spans, and pull-offs. In the maintenance shop area, the contact wire is supported from the building structure. The poles shall be tapered tubular. Underground parallel along-track feeders are typically unnecessary due to the low vehicle operating speeds, but shall be installed and connected frequently to the contact wire when it is necessary to satisfy electrical load requirements of the system.

10.7.5 Operations

The design of the OCS shall be based on technical, economical, operational, and maintenance requirements, as well as on the local climatic conditions. The minimum and maximum temperature for design considerations is 25° F and 145° F. The OCS design shall be coordinated with the vehicle dynamic performance characteristics to ensure that current collection is maintained within acceptable limits. The OCS shall also accommodate the physical characteristics of the vehicle and the performance requirements of the auxiliary systems associated with the car, i.e. clearance envelopes, auxiliary power supply voltage, etc.

The OCS shall be designed for multiple pantograph operation with pantographs spaced in accordance with the specified train consists. The OCS shall allow the train consists to operate with one to four pantographs without causing excessive oscillation of the overhead contact system, or pantograph bouncing or arcing. The overhead contact system shall be designed according to the current American Railway Engineering and Maintenance of Way Association (AREMA) recommendations.

10.7.6 Contact Wire Height

Contact wire height for extensions shall match that used on the adjoining system, unless otherwise approved by Valley Metro. The nominal contact wire height for various alignment segments shall be in accordance with the NESC Table 232-1 (C2-2002) as follows:
### Alignment Type	Wire Height Above Rail Minimum
Dedicated right-of-way | 16'-0"
Mixed-used, pedestrian only (vehicles restricted) | 16'-0"
Mixed-use with road vehicles | 18'-6"
Mixed-use with railroad | 22'-0"

Note – These values are provided for the worst combination of tension, sag, temperature, construction and maintenance tolerances.

The nominal contact wire height shall be in accordance with the requirements of the NESC. Exceptions shall be addressed on a site-specific basis, and subject to Valley Metro approval. The contact wire installation height at supports shall take into consideration the effect of wire sag, due either to temperature rise or installation tolerance (including track construction and maintenance tolerances).

At critical locations (i.e. restricted clearance under bridges) or fixed trackwork points (grade crossings, embedded or direct fixation trackwork), no allowance need be made in the OCS design for track lift. At non-critical locations, the catenary system design shall allow for a future ballasted track lift of up to three inches.

When changing from one contact wire height to another, the transition of the height shall be changed gradually to prevent pantograph bounce and arcing. The maximum gradients for contact wire change in elevation relative to the track elevation shall be in accordance with the AREMA Chapter 33 as follows:

<table>
<thead>
<tr>
<th>Speed Limit/Location</th>
<th>Maximum Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard</td>
<td>2.3%</td>
</tr>
<tr>
<td>30 mph</td>
<td>1.3%</td>
</tr>
<tr>
<td>45 mph</td>
<td>0.8%</td>
</tr>
<tr>
<td>60 mph</td>
<td>0.6%</td>
</tr>
<tr>
<td>65 mph</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Except for the yard, the change of grade from one span to the next shall not exceed one half of the value shown for the associated speed limit.

10.7.7 Loading

Structural loading shall be based on NESC Rule 250-B, Combined Ice and Wind Loading, "light" loading district:

- 16.4-lb/feet² horizontal wind pressure
- 0 in. radial ice on conductors
- 0.05 lb/feet constant added to the resultant
- +30 degrees F (-1 degrees C) temperature
10.7.8 Spans Length and Staggers

The contact wire shall be staggered on both tangent and curved track. Stagger is the deliberate lateral displacement of the contact wire at each support to the left or right of the track centerline. The span lengths (spacing between messenger wire or single contact wire support points) and staggers shall be designed to provide for pantograph security (mitigate pantograph dewirement) and to maintain good current collection and uniform wear of the pantograph carbon collector. The lateral displacement of the contact wire from the projected centerline of the track shall be determined by calculation to maximize the sweep of the contact wire across the pantograph carbons and spread wear to extend the operating life of the carbon strips. The calculations shall take into consideration all live and contingency conditions, vehicle roll, lateral shift and track maintenance tolerances to determine this maximum stagger dimension with due consideration to pantograph security. For pantograph security, the contact wire stagger shall be an optimal 10”, but under no circumstances travel beyond 6” of the end of the carbon collector strip on the pantograph under worst-case conditions.

On tangent track, the wire is staggered primarily to achieve uniform wear of the pantograph carbon collector strip. On curved track, the stagger achieves the tangent/chord construction necessary for the “straight-wire” catenary to negotiate the curve.

Pantograph security is established by restricting the maximum contact wire displacement to ensure a minimum distance (from the contact wire to the end of the pantograph collector strip) of two inches under worst operating condition.

In order to maintain the contact wire on the pantograph head, the design factors to be considered shall include OCS conductor blow-off, contact wire height, contact wire stagger, contact wire midspan offset, contact wire stagger effect on tangent, contact wire deviation due to movement of hinged cantilevers, mast deflection due to imposed operational loads, vehicle roll and lateral displacement, width and sway of pantograph, track tolerances, OCS erection tolerances, pantograph shape effect, and a pantograph security factor.

The design shall consider the effects of environment, track geometry, vehicle and pantograph sway, and installation and maintenance tolerances. Vehicle roll into the wind shall be taken equal to be 50% of the maximum dynamic roll value, in accordance with the Wind Deflection section in AREMA Manual, Chapter 33, Part 4.

To minimize the possibility of harmonic oscillation in the catenary system, not more than five equal spans shall be located successively in areas where LRV speed is expected to exceed 55 MPH. A span, which is at least 10% shorter, shall be inserted to minimize the possibility of any sympathetic oscillation.

10.7.9 Catenary Conductors

The contact wire shall be solid grooved hard-drawn copper, conforming to ASTM Specification B47 (size: 350 kcmil).

The messenger wire shall be standard hard-drawn copper, conforming to ASTM Specification B189, (size: 500 kcmil), with stranding conforming to ASTM Specification B8, class B or higher.
In the design for contact wire conductor selection, the following shall be considered:

- 20% loss of section for current carrying capacity for traction power system analysis.
- 30% cross-section area loss for LPSCAT or SWAT due to wear of contact wire for mechanical loading and replacement.
- 20% cross-sectional area loss for LPSCFT or SWFT due to wear of contact wire for mechanical loading and replacement.
- The effect of temperature change on all conductors

The conductors shall be rated to thermally withstand solar heating of 150° F (71.1° C) and maximum operational power loads without becoming damaged electrically or mechanically, or exhibiting signs of annealing.

10.7.10 Construction and Maintenance Tolerance

The purpose of the catenary system is to provide electrical power to the LRV, via the pantograph collector. Consequently, it is vitally important that the contact wire is installed correctly above the as-built trackwork. Construction tolerances shall be:

- Contact wire height (CWH) shall be 0" to +3" at all locations
- Messenger wire lateral displacement (relative to contact wire): +/-1" at support
- Maintenance tolerances shall be developed during final design.

10.7.11 Poles and Foundations

The OCS support poles may be painted tapered tubular or decorative tubular based on the local conditions and urban design requirements. Center pole construction is preferred, but side pole construction is acceptable where required. Pole locations and design shall be coordinated with dc feeder riser locations and track designs. OCS support poles on the yard lead and storage can be H sections.

The pole heights for each pole type shall be as uniform as practical to limit the number of required spares. Exceptions shall be considered on a case-by-case basis only when a standard pole height is deemed to be perceptibly inappropriate.

Where necessary, OCS poles may serve as joint-use lighting or signal poles to support street illumination fixtures, traffic signals, and LRT signals. The pole loading calculations shall include consideration of these other elements.

The poles shall support low profile catenary and/or single contact wire configurations. The pole finish shall be in accordance with the Urban Design Criteria. All poles, except those on existing overpass or underground garage structures, shall be installed on cast-in-place reinforced concrete foundations by means of embedded anchor bolts. On the structures, the poles shall be supported by means of anchor bolts installed through the deck or cast into piers. Poles shall be grounded by a bonding cable attached between the pole base plate and a ground plate installed as part of the foundation. The pole base plate, foundation bolts and reinforcing bars shall be connected with exothermic welds to 5/8" diameter by 10-foot long ground rod(s) adjacent to the
foundation. Poles, base plate connection, and hand hole reinforcement (for tubular poles only) shall be designed by the allowable stress method of the AISC Specifications. The allowance for a one-third increase in allowable stress for wind combined loading shall be waived.

Anchor bolt patterns shall be selected to provide coordinated relationships between poles and foundations. The coordination shall be based on matching strength and minimizing the number of required configurations.

Foundation design shall be coordinated with the track designers and underground utilities, and shall meet the seismic requirements of Chapter 5, Structural. The design and construction of the pole foundation and guy anchor foundations shall conform to established civil and structural engineering practices, ASTM and ACI standards, and other applicable codes. The foundations shall be reinforced concrete and shall be capable of withstanding the design load imposed during installation, operation, and maintenance. Foundations shall be designed to limit the total effect of foundation rotation and pole deflection during train operating conditions to two inches at the contact wire level. Pole deflection at the top of the pole under NESC light loading conditions shall be no more than 2% of pole length. Overload factors shall not be applied in the calculation of pole deflection.

10.7.12 Electrical Clearances

Clearances shall be maintained between live conductors (including pantograph) and any grounded fixed structures in accordance with the AREMA Manual, Chapter 33 Part 2.

Static clearance is the clearance between any live portion of the overhead contact system, and any grounded structure, when not subject to pantograph pressure.

Passing clearance is the clearance between any live portion of the overhead contact system or pantograph and an overhead structure under actual operating conditions, during the time it takes the train pantographs to pass.

Mechanical clearance from the pantograph to any fixed item, excluding the steady arm or registration pipe of the cantilever, shall be not less than 3 inches. Clearance to steady arms and registration pipes shall not be less than 1½ inch.

For vehicle-related clearances, full allowance shall be included for dynamic displacement of the vehicle under operating conditions (including track and other installation and maintenance tolerances).

10.7.13 OCS Support Assemblies

Various overhead support systems are required to suit different styles of OCS and applications. The OCS support assemblies shall be double insulated to limit leakage currents, and to permit “live-line” maintenance operations.

10.7.13.1 Cantilevers

The general type of OCS support for double-track is center-pole with back-to-back cantilever brackets. The mast attachments shall be fitted with hinge pins to permit along-track movement of the OCS conductors due to temperature change. The cantilevers shall be of three general types: the single contact wire type for use with direct suspension contact wire, the simple
catenary tangent track cantilever, and the simple catenary curved track cantilever. Long-reach cantilevers shall be implemented with a reach of up to 18’ from center-of-pole to center-of-track. Beyond 18’ reach, cross-spans shall be used if possible in conjunction with urban design coordination.

10.7.13.2 Cross-spans
Cross-spans shall be used on the mainline to support the OCS where poles are difficult to place adjacent to the track, or in multi-track situations, i.e. storage sidings. In the yard, single-wire cross-spans shall be utilized for multi-track situations or for crossing intersections. Standard OCS poles and assemblies shall be used when cross-spans are not feasible.

10.7.13.3 OCS Attachments to Existing Structures
Existing structures in this section describe buildings, roadway structures and overpass bridges currently along the LRT alignment. Attachments or foundation provisions may be required at certain undercrossing and overcrossing structures. Attachments to such existing structures shall be coordinated with the appropriate governing authorities, owners, and stakeholders, and approved by Valley Metro. Structural analyses shall be performed to verify that the OCS attachments and foundations are secure, safe, and aesthetically acceptable. Grounding provisions shall be confirmed or added as required to ensure that the supporting structure is effectively grounded.

No attachments shall be made to undercrossing structures except where clearance limitations or along-track length of the structure make attachment a necessity. To minimize pantograph bounce, and loss of contact between the pantograph and contact wire, a soft flexible suspension assembly shall be used.

OCS support foundations shall not be located on overcrossing structures or decks except in situations where the structure span is greater than the allowable OCS span.

Attachments to existing building or pole structures may be required to support the OCS, especially at curves in the alignment. The use of new support poles shall be preferred over making attachments to existing buildings. Existing lighting, power and traffic poles shall not be used to support OCS elements.

10.7.14 OCS Tensioning
Counterweights shall be cast iron or lead mounted within tubular poles. The material shall be proven suitable for the loads and climatological conditions of the system.

10.7.15 OCS Grounding and Bonding
The OCS poles shall be properly grounded in accordance with NEC requirements. All OCS poles shall be grounded via ground rods. Separate ground rods shall be provided for each surge arrester.

The resistance of individual pole structures shall be maintained at a maximum of 25 ohms. A ground stud shall be provided on each pole, to which a ground jumper shall be bolted. Poles shall be grounded by a bonding cable attached between the pole and a ground plate installed as part of the foundation installation. The ground plate shall be connected to the foundation reinforcement cage connected to a 5/8” diameter by a 10’ long or longer ground rod. If
necessary, additional ground rods shall be installed to achieve the minimum required grounding resistance.

Ground connections to disconnect switches and ground leads on all surge arresters shall have a maximum ground resistance of five ohms. Each device shall be connected directly to a dedicated grounding electrode(s). Ground rods shall be connected to form the grounding system to obtain the required ground resistance. Grounding requirements shall be applied to affected metallic structures, fences, bridge screens, etc., within or adjacent to the system ROW.

10.8 Negative Return System

The negative return system design shall be in compliance with this section and coordinated with Chapter 4, Trackwork, and Chapter 11, Signaling.

The running rails shall be used as the primary circuit for the negative return current. In order to minimize dc leakage current each running rail shall be insulated from direct contact with the ground by the use of insulating pads at tie locations, and/or insulated pads and boots when direct fixation or embedded track is used.

At locations requiring insulated joints, impedance bonds shall be used to maintain continuity of the dc negative return circuits. Rail bonding jumpers across mechanical joints shall be a minimum of two 250 kcmil bare copper cables per rail. Cross bonding between tracks shall be required to control voltage rise in the running rails. In signaled areas, the running rails shall be cross-bonded through impedance bonds as often as the signal system permits.

Negative return cables shall be welded and electrically bonded. The bonding connections shall be suited for the size cables used to ensure adequate current-carrying capacity. Where it is necessary to have a bolted connection, the bolted joints shall also be electrically bonded.

The negative return rails in the MOE shall be grounded. Insulated joints shall be installed at the entrances to the yard and to the MOE building to prevent any connection between the grounded rail return system in the OMC and the rails in the yard, or between the yard rails and the ungrounded main line tracks.

Pad mounted rail bypass disconnect switches shall be installed at the Yard/Mainline interface to allow interconnection of the segregated track under contingency operations. The Yard/Mainline rail bypass disconnect switches shall be key-interlocked with the OCS bypass disconnect switches to prevent opening of the rail switch until the OCS switch is opened, and to prevent closing of the OCS switch until the rail switch is closed. Negative return feeders to the substations shall be insulated.

Cross bonding of tracks shall be done every 1,500 ft. or less, as the signal system allows, to equalize return rail voltages.

10.9 Corrosion Control

Designs shall incorporate provisions that mitigate stray currents and provide means of monitoring potential stray current conditions according to this section and Chapter 19, Stray Current and Corrosion Control. As a minimum, running rails shall be isolated to the extent
practical from ground by the use of insulating pads at tie locations, and/or insulated pads and boots when direct fixation or embedded track is used. The mainline traction electrification system shall be isolated from the yard and OMC traction power systems.

10.10 Traction Power Remote Control

Remote control and indication functions shall be provided to enable rapid and accurate control and monitoring of the traction electrification system operation from a central control point. In addition to control and monitoring functions of the ac, dc and bus systems switchgear in the substations, fire and intrusion alarm detection shall also be incorporated. Substation circuit breaker lockouts shall not be remotely reset.

10.11 Light Rail Vehicles

The traction electrification system design shall be in compliance with these sections and coordinated with Chapter 8, Vehicle.

The traction power and distribution system design shall be coordinated to ensure compatibility with the light rail vehicles, i.e. the LRV propulsion system and auxiliaries shall accept the full range of traction power voltage variations.

The traction power supply and distribution system shall be designed for natural reception only from vehicle regenerative braking. No power shall be fed back to the utility.
11.0 SIGNALING

11.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the Signal System for future expansion of the Valley Metro LRT system. The Signal System, which includes the functions of signal protection, grade crossing protection, and traffic signal coordination, shall be designed to allow Valley Metro transit vehicles to meet the required line capacity, while providing a safe and operationally flexible system.

In Exclusive and Shared Exclusive rights-of-way (where distance, operating speed, or other factors make full signaling advantageous), transit vehicle movements will be controlled by the vehicle operator, but shall be governed by an Automatic Block Signaling (ABS) System in accordance with the AREMA Communications and Signal Manual of Recommended Practices (AREMA C&S Manual). At-grade crossings in ABS territory shall be protected by Automatic Highway Crossing Warning (AHCW) systems.

In Semi-Exclusive or Non-Exclusive rights-of-way where the track is in the median of the roadway or in reserved lanes, the progression of Valley Metro transit vehicles through intersections shall be governed by LRT (bar) signals, which are controlled by the city’s traffic signal controllers (where provided). Signaling shall be provided in Semi-Exclusive rights-of-way where operational and safety needs so dictate. Where rail signaling will be provided, and vehicle operating speeds and motor vehicle traffic conditions dictate the need for warning systems, road crossings shall be equipped with AHCW systems. A transit signal priority strategy shall be utilized to facilitate the movement of rail traffic, where agreed to by the local authority through the Inter-Governmental Agreement. Where signaling is utilized, automatic train stops will not be provided.

Input to street traffic controllers shall be provided by a combination of predictive priority detection loops (provided in the street traffic control system design), Train-to-Wayside Communications (TWC), where required, and/or by Signal System track circuits as applicable. Transit vehicle and street traffic systems along the Valley Metro LRT project shall be designed and operated as a complete integrated system.

The Supervisory Control and Data Acquisition (SCADA) system shall be used to monitor status and provide appropriate controls to manage the Valley Metro operations. Control shall be provided from the Operations Control Center (OCC) and/or the Backup Control Center via SCADA, locally via the TWC subsystem (as specified), as well as via wayside local control panels located in the signals equipment housing or room. Vehicle tracking shall be provided by the GPS based WiMax system integrated with SCADA. See Chapter 12, Communications, for details.

11.2 Functional Design Requirements

To the greatest extent possible, the Signal System shall be proven systems, which utilize state-of-the-art, “off-the-shelf”, standard equipment and components. The Signal System shall provide the highest levels of reliability, maintainability, and safety. The Signal System shall have an expected service life of 15 years at the specified levels of service. Specific requirements for
Signal System equipment designs shall be provided in the procurements documents. “Proven systems” shall be defined as systems or system components that are now in use and performing well on similar Operational Light Rail Transit Systems in North America or Europe, and have been performing successfully and trouble-free in revenue service for at least five years.

- The Signal System shall be fully compatible with the Communications System, Traction Electrification System, trackwork, and the Valley Metro light rail vehicles.

- Elements of the Signal System that affect the safety of persons or equipment are considered to be vital and shall be designed using fail-safe design principles in accordance with the AREMA C&S Manual of Recommended Practices. Any single detectable failure or combination of undetectable failures shall not cause an unsafe condition to occur.

- The Supervisory (SCADA) system that provides the interface to accept requests for control or provide indications to the OCC controllers is considered to be non-vital. This non-vital system shall interface with the vital systems. Following control requests by the non-vital system, the vital systems shall provide the fail-safe decisions to determine the appropriate response and action.

- Vital circuits shall be designed using standard signaling techniques. They shall be positive energy, single break within housings. All vital circuits exiting a housing or room shall be double break.

- Vital microprocessor-based systems (if used in lieu of vital relay logic) shall be proven, fail-safe, fault-tolerant systems of high reliability, and a type proven to have a high Mean Time Between Failure (MTBF) in operation. Vital controllers shall be provided in a redundant configuration and design to automatically switch between primary and secondary controllers and back to primary when primary function is restored. All vital microprocessor systems must be certified as conforming to all AREMA and FRA standards governing vital processor equipment in effect at the time of purchase.

- Non-vital circuits shall utilize high-reliability solid-state technology for all non-vital logic, minimizing the use of non-vital relays. Failure of non-vital equipment shall not affect the safety of the system.

11.3 Operational Design Requirements

In the design and implementation of the Signal System, the following operational constraints and assumptions shall apply:

- Where signaled, the system shall support headways dictated by operational requirements and supported by the Traction Power System design.

- The Signal System shall be designed to operate automatically to the maximum extent possible. This includes automatic routing, dispatching, station departure control, and other ATC functions.

- The Signal System shall be designed such that, under normal conditions, all routing is done locally without requiring direct intervention from OCC.
• The Signal System shall be designed such that loss of communications from/to the OCC shall not directly result in any degradation of service.

• The Signal System shall provide for lower level of service under certain failure scenarios including, but not limited to, utility power loss, loss of vehicle communications or TWC subsystem failure.

• LRVs location and movements throughout the main line and in the Yard shall be displayed and supervised at OCC and/or in the Backup Control Center continuously, using track circuits and where not signaled via the vehicle tracking sub-system.

Emergency local control shall be provided for all signaled crossovers from a rack mounted PC-based Local Control Panel (LCP) located in the signal equipment room or building near the crossover. The LCP shall show a graphical representation of the crossover and adjacent track plan, switches, signals, and all other relevant physical features. The LCP shall allow an operator to independently operate switches and request routes over the crossover, when authorization from OCC has been provided. The LCP shall include all necessary hardware and software to ensure that access to, and control of, the LCP shall be limited to authorized persons only. Specific signal, switch and track circuit numbering shall be consistent with the existing system.

11.4 Environmental Design

All Signal System equipment shall be designed to operate within the environment in which it is installed and in site temperature conditions that represent the 50-year highest and lowest temperature of record and at a non-condensing relative humidity of 95% at a temperature of 30°C (86°F).

11.5 Electromagnetic Interference (EMI)

The Signal System, and all of its subsystems, equipment and components, shall be designed and installed to be electromagnetically compatible with its environment. The following considerations shall be taken into account in the design of the system:

• Track circuit design shall not permit EMI from any source, such as traction power, power supplies, Communications System, light rail vehicle systems, or other wayside equipment, to interfere with its operation.

• Selection of audio frequencies for track circuits, where utilized, shall minimize interference and crosstalk to a level that shall not cause an unsafe condition.

• Amplifiers shall be utilized to boost signal-to-noise ratios, and repeaters shall be utilized to regenerate signals, where applicable.

• Shielded wire, twisted pair cables, and rigid steel conduit, if necessary, shall be utilized for EMI noise mitigation measures.

• Proper grounding and bonding of apparatus, conductor shields, and raceways, shall be provided to maximize shielding and minimize circulating currents.

• Surge protection against lightning and other natural sources of EMI shall be provided.
11.6 Growth and Expansion

The Signal System design shall include the following provisions to allow for future growth and expansion of the system:

- At end-of-line equipment house locations, considerations shall be incorporated into the system design and hardware configurations to minimize the effort of expanding the Signal System when subsequent extensions are designed. Additional space shall be provided in housings for the installation of future equipment. Signal System power supplies and the house utility service drop shall include sufficient capacity to accommodate any proposed system expansion. The Signal System designer shall base the precise amount of additional space and utility capacity to be provided upon an analysis of future system requirements. Such analysis shall be provided to, and agreed upon, by Valley Metro.

- The design of individual racks and terminal boards shall include sufficient space for the installation of future equipment and cable.

- Provisions shall be incorporated into the design of control and indication circuits to OCC for a logical expansion of the system.

- Vital microprocessor-based systems shall support up to 2 spare vital serial links for communications for future interfaces to additional microprocessor-based systems. The system shall have a total aggregate capacity to process up to 3000 straight line relay equivalent logic equations per second, not including any redundancy requirements needed to meet the specified availability requirements for its site-specific configuration. Non-vital serial communications shall provide for transmission of data between the processor and SCADA, TWC, street traffic systems, as well as an EIA-compatible modem for future remote communications. Where required, communications between vital microprocessor-based systems shall be provided via the Fiber Optic Carrier Transmission System.

11.7 Codes and Standards

The Signal System shall conform to the applicable requirements of the codes and standards listed herein, as well as all local codes and ordinances, unless specified otherwise. Where the requirements stipulated or referenced conflict, the more stringent shall apply. Unless specifically noted or approved, the latest edition of the code or standard at the time of design shall apply.

The design, installation, and test of the system shall meet the applicable codes and standards, or portions thereof, of the following:

- American National Standards Institute (ANSI).

- Electronic Industries Association (EIA).
• Federal Railroad Administration (FRA), Title 49, Part 236 (including Subpart H).
• Federal Railroad Administration (FRA), Title 49, Part 234.
• Federal Transit Administration (FTA).
• APTA Recommendations and Standards.
• Arizona Department of Transportation, Public Transportation Division
• Institute of Electrical and Electronics Engineers (IEEE).
• Insulated Cable Engineers Association (ICEA).
• Manual on Uniform Traffic Control Devices (MUTCD), Parts 8 and 10.
• National Fire Protection Association (NFPA).
• Underwriters' Laboratories (UL).

For use of shared right-of-way with railroads, design and operation shall conform to joint FRA/FTA policy.

11.8 Signal Circuitry

The Signal System shall be a vital microprocessor-based control system. The Signal System shall incorporate fail-safe designs to check and control all safety critical functions concerning track switch operation, vehicle occupancy status, wayside signal indications (in ABS territory), and route security.

In ABS territory, the Signal System shall perform the following functions:

• Continuous positive presence detection of all vehicles.
• Safe vehicle separation governed by the worse-case safe stopping distance. The designer shall provide safe braking distance calculations when defining approach track circuits.
• Interlocking switch control circuitry (e.g., route locking, detector locking, time locking, and approach locking) to prevent switch machines from unlocking or moving while a transit vehicle is approaching or traveling through a switch section, and to prevent vehicles from approaching or entering a switch section unless the route is verified to be aligned and locked.
• Aligning and locking routes at all merging and diverging route locations, as operational needs mandate. Sectional release of route locking shall be provided at terminal stations, pocket tracks, and at other locations where operational needs so dictate.
• Malfunctions in the Signal System shall be self-detecting, where possible and practical. Circuits that affect safety are considered to be vital and shall be designed on the closed-loop principle, such that any failure in the circuit shall result in the opening of the circuit, which in turn shall leave the circuit in a safe condition and provide the capabilities for an alarm state.
• Approach track circuits shall be provided at all signals, unless otherwise approved by Valley Metro.

• In terminal stations, train detection shall be provided in all storage tracks. The designer shall ensure that the Signal System design shall permit storage for a 3-car train, at a minimum, unless otherwise approved by Valley Metro.

• Control highway and pedestrian grade crossing functions, where utilized.

11.9 Train-to-Wayside Communications (TWC)

A TWC sub-system shall be provided to locally request and cancel normal operating routes, activate Automatic Highway Crossing Warning (AHCW) Systems (where applicable and not approach activated), and provide input to street traffic control systems, as operational requirements dictate. TWC shall be provided at:

• Terminal stations, to permit a vehicle operator to request a route out of the station platform without assistance from OCC.

• Normal yard entrance and exits, to permit a vehicle operator to request routes into or out of the yard lead without assistance from OCC.

• Pocket and siding track exit points, to permit a vehicle operator to request local routes without assistance from OCC.

• At designated locations along the alignment to permit a vehicle operator to request and/or cancel grade crossing activation.

• At other locations as identified by Valley Metro.

The TWC shall include all hardware and software as required to support error detection and corresponding re-transmissions in its data communication.

The Signal System supplier shall design, provide, install and test all of the car borne and wayside TWC equipment. The TWC shall be fully coordinated with other Signal System equipment, vehicle propulsion and space limitations, and the Communications System.

11.10 Storage Yards

The control of vehicles in the main storage yards shall be by line-of-sight rules and under the supervision and control of a Dispatcher utilizing SCADA for the train tracking and video monitoring by a CCTV subsystem.

Yard switches shall be hand-operated, power-operated with dual control, or a combination of both, as required by operational requirements and approved by Valley Metro. All yard switches shall be trailable. Power-operated track switches, where utilized, shall be interlocked and operated from the Local Control Panel (LCP), the OCC, and the Backup Control Center. Switch point indicators shall be provided for all powered switch, if wayside signals are not used.
11.11 **Switch Machines**

Track switches in signaled main line areas shall interface with the Signal System. The type of switch machines shall be directed by Valley Metro.

Standard transit styles switch machines shall:

- Be a proven design;
- Operate using electric power, which shall be from the signal power line or from a commercial 120 VAC power source rectified to 110 VDC;
- Conform to all FRA and AREMA standards for power-operated rail switch machines;
- Mechanically couple the switch-operating layout to the switch points. Throw rods shall be insulated in signaled areas;
- Provide a means for locking to prevent switch point movement when points are in full normal or full reverse positions;
- Provide a circuit controller for indication that the switch points have been moved to, and are in the full normal or full reverse positions. Indications for each switch individual switch machine shall be indicated to OCC;
- Use a separate, dedicated rod on the switch point for operation of the circuit controller, and;
- Be equipped with a means to throw the points manually.
- Be low profile and include a housing that keeps the machine from public view, yet provides for maintenance access, unless otherwise approved by Valley Metro.

Embedded style switch machines shall:

- Be a proven design;
- Be trailable;
- Provide for operation from on-board the transit vehicle;
- Be equipped with a means to throw the points manually; and
- Provide for indication that the switch points have been moved to, and are in the full normal or full reverse positions. Indications for each switch individual switch machine shall be indicated to OCC.

11.12 **Signals**

In Exclusive and Shared Exclusive rights-of-way (ABS territory), signals shall be standard railway color light type, utilizing light emitting diodes (LEDs), and conforming to the AREMA C&S Manual of Recommended Practices.

In Semi-Exclusive and Non-Exclusive rights-of-way signals shall be low profile and mounted between the rails (1" above TOR, maximum).
Signals shall be provided with lenses that provide for close-up observation and high long-range visibility to the vehicle operator.

11.12.1 LRT (Bar) Signal Aspects

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Aspect</td>
<td>Stop, Contact OCC</td>
</tr>
<tr>
<td>Horizontal White Bar</td>
<td>Stop</td>
</tr>
<tr>
<td>Vertical White Bar</td>
<td>Proceed but be prepared to stop short of any vehicle or obstruction</td>
</tr>
<tr>
<td>Flashing Vertical White Bar</td>
<td>Phase change is eminent; prepare to stop</td>
</tr>
</tbody>
</table>

11.12.2 Color Light Signal Aspects

The fundamental aspects of color light signals at mainline interlockings shall be as shown below, or as further developed by Valley Metro as operational requirements are fully defined.

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Aspect</td>
<td>Stop, Contact OCC</td>
</tr>
<tr>
<td>Green</td>
<td>Straight movement – Normal direction</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>Straight movement – Reverse direction</td>
</tr>
<tr>
<td>Yellow</td>
<td>Diverging movement – Normal direction</td>
</tr>
<tr>
<td>Flashing Yellow</td>
<td>Diverging movement – Reverse direction</td>
</tr>
<tr>
<td>Red</td>
<td>Stop</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>Call-on - Contact OCC before proceeding</td>
</tr>
</tbody>
</table>

11.12.3 Manual Switch Position Indicator Aspects

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Aspect</td>
<td>Switch points are open or power is out. Switch is not aligned for the train to move. Stop and call OCC.</td>
</tr>
<tr>
<td>Red</td>
<td>Switches aligned for cross-over movement. Stop and call OCC for instructions before proceeding.</td>
</tr>
<tr>
<td>Green</td>
<td>Switch (or switches) in Normal position aligned for Straight movement with the normal flow of traffic.</td>
</tr>
<tr>
<td>Flashing green</td>
<td>Switch (or switches) in Normal position aligned for Reverse movement against the normal flow of traffic (e.g. reverse running).</td>
</tr>
</tbody>
</table>
11.13 Automatic Highway Crossing Warning Systems

Where signaling is provided, and where transit vehicle operating speeds and street traffic conditions dictate the need for warning systems, road crossings shall be equipped with Automatic Highway Crossing Warning (AHCW) systems. Crossing warning systems shall conform to the AREMA C&S Manual and the design and performance requirements of FRA Title 49, Part 234. Constant warning time approach circuits shall be utilized to provide a minimum of 20 seconds warning time. The designer shall provide calculations when defining approach track circuits. In general, the AHCW systems shall include the following, modified to site specific conditions:

- Gate mechanism operating voltage shall range from 10 to 16 VDC.
- Aluminum gate arms, with fiberglass tips, including adapters with shear pins so that excessive side force against the gate arm shall cause the adapter's shear pins to shear allowing the arm to swing free and drop away, thus preventing major damage to the arm. Assemblies shall be compatible with existing Valley Metro stock (i.e. EZ Gates), unless otherwise approved.
- Flashers utilizing LED technology.
- Provide grade crossing indicator signals.
- Vital solid state crossing controllers, including a means to adjust timer settings, which does not require modification to software.
- Off-quadrant flashers, as applicable.
- Cantilevers, as applicable.
- Electronic bells. In noise sensitive areas, adjustable soft tone bells shall be provided.
- Signage, as required by the MUTCD and traffic analyses.
- Loss Of Shunt (LOS)
- Power Off Indication (POK) Lights

11.14 Interface Requirements

11.14.1 Street Traffic Signal System Interface

Where the LRT system operates at grade in ABS territory where AHCW systems are utilized, transit vehicle movements may be controlled by wayside signals, however, street traffic signals shall be pre-empted to give transit vehicle movements full priority.

The Signal System designs shall be coordinated with the street traffic signal system design, including such elements as:

- Cable sizes, quantities, and termination requirements shall be defined for all road traffic controller interface terminations.
- The use of predictive loops and/or track circuits for street traffic and transit signal phasing activation, and release, shall be coordinated.
11.14.2 Vehicle Interface

The Signal System designs shall be coordinated with the design of the Valley Metro LRV. All Signal System equipment designs, and placements shall consider the dynamic outline of the Valley Metro LRV and shall provide a minimum of 6" clearance.

Doors of Signal System equipment cases or housings shall be restrained from opening to a position less than 6" clear of the Valley Metro LRV dynamic outline.

No equipment shall be placed in such a manner as to obstruct a train operator's (or motorist's) view of any governing signal.

11.14.3 Trackwork Interface

The Signal System designs shall be coordinated with the trackwork design, including such elements as:

- Insulated joints in non-crossover locations, if required, shall be provided for track circuit boundaries, and shall be coordinated with other facilities-provided structures (e.g., station platforms) to ensure sufficient room for the installation of Signal System equipment.
- Insulated joints for track circuit boundaries within crossovers or other special trackwork configurations shall be identified to Valley Metro and to the entity responsible for such special trackwork design in advance of the final design of the trackwork.
- Block-out requirements shall be defined for installation of signal equipment.
- Tie spacing in ballast track shall be coordinated for installation of impedance bonds, as required.
- Switch machine operating rod connections (bolt patterns) to switch points shall be coordinated and identified. Locations and sizes of block-outs shall be defined in embedded areas to accommodate installation of the machines.

11.14.4 Traction Power System Interface

The Signal System shall be coordinated with the traction power subsystem, including such elements as:

- The selection of track circuit frequencies and modulation schemes shall be coordinated with the vehicle traction power subsystem so as to preclude interference between the Valley Metro LRVs, the Traction Power Subsystem and the Signal System equipment and operations.
- Impedance bonds shall be installed, as appropriate, at negative return, signal cut sections and cross bonding locations.
- Crossbonding shall be coordinated between the traction power final designers to assure that adequate cross bonds are provided for efficient traction power negative return without compromising track circuit integrity.
11.14.5 Communications Interface

The Signal System shall be coordinated with the communications subsystems, including such elements as:

- Joint use equipment housings.
- Communications protocols.
- SCADA input interface.
- Signal system logic controllers shall be provided with Ethernet communications ports for both vital and non-vital functions.

11.15 Track Circuits

Track circuits that are capable of operating in dc-electrified territory without interference from the vehicle propulsion system shall be utilized in signalled areas for vehicle detection. Designs shall be consistent with Valley Metro’s existing system, unless otherwise approved. Track circuit types shall include:

- Audio-frequency track circuits
- Audio frequency overlays for crossing warning systems.
- Double-rail power frequency track circuits.

Impedance bonds, as required, shall be utilized at track circuit boundary locations to maintain continuity of the dc negative return system. Impedance bonds shall have a minimum rating of 1500 amps.

In signalled areas, the running rails shall be crossbonded through impedance bonds. Crossbond intervals shall be as determined by traction power simulations, however, no closer than every second track circuit. Impedance bonds at crossbonds and negative returns shall have a minimum rating of 2500 amps. Negative return connections in signalled areas shall be connected to impedance bonds.

Wayside track circuit equipment, such as line-to-rail couplers, shall be installed in wayside pole-mounted enclosures.

11.16 Power

The Signal System shall be powered by a single phase, 120/240 VAC feed from either the nearest passenger station or from a dedicated power drop from a local utility company. The local signal power system shall supply all local equipment required to operate the system, including:

- A 12 V dc power system for operation of Signal System logic, including grade crossings. Uninterruptible Power Supplies, utilizing floating nickel cadmium batteries, shall be provided for Signal System logic and grade crossings necessary to continue normal revenue operations for a period of eight hours.
• A 120 V ac power system for operation of all track circuits and switch machines. Backup power shall be provided to continue normal revenue operations for a period of eight hours, unless otherwise dictated by operational requirements.

• Ground detection shall be provided for the 12 V dc supply system, at a minimum. The need for an AC ground detection system shall be considered on a case-by-case basis, as dictated by maintenance requirements.

11.17 Houses

Signal System equipment shall be installed in houses, cases, or rooms in the general vicinity of crossovers. Houses shall:

• Be at minimum pre-fabricated, pre-wired, and sized to accommodate all equipment required to operate that part of the system for which it will be designed, including the necessary provisions for growth and expansion. Where aesthetics is a concern, concrete structures or other appropriate measures to conceal the building, as approved by Valley Metro, shall be provided. Aesthetic enhancements to pre-fabricated structures may be provided in lieu of concrete structures as urban design guidelines and as local planning departments require.

• Provide sufficient space for the installation of Communications System equipment, where applicable.

• Include heating and air conditioning for equipment protection.

• Access doors shall be at least 30 inches wide and sized to allow replacement of the largest piece of equipment. A motion detector shall be provided on each entry door.

• Be oriented logically from the maintenance and operations perspective.

• Provide a weatherproof auxiliary power outlet on the exterior that shall permit the plug in of a generator to provide backup power beyond what is provided by battery backup. The outlet shall be compatible with existing Valley Metro equipment. A manual transfer switch shall be provided to facilitate a switch between power sources.

• Have a minimum of three feet of clearance both in front of and behind all racks.

• Not have any racks mounted on hinges. Adequate front and rear clearance shall be provided by selection of proper location.

• Use shock mounting for racks mounted in rooms at locations where subjected to excessive vibration.

Rooms, where utilized, shall be equipped with standalone, pre-wired 19-inch racks, and all associated location equipment.

11.17.1 Ventilation

Signal houses shall include two identically sized HVAC units meeting the following performance requirements:
Minimum Single Unit Performance: At exterior temperature of 100°F DB and mean coincident wet bulb temperature (as cited by ASHRAE); and when the signal house is under full heat load; the cooling system shall maintain all electrical systems within manufacturer’s specified thermal rating, and interior space not to exceed 85°F.

Minimum Two Unit Performance: When interior temperature exceeds 85°F DB, or electrical equipment temperatures exceed manufacturer’s recommended ratings, the second unit shall activate. When signal house is under full heat load, the system shall maintain all electrical systems within manufacturer’s specified thermal rating, and interior space shall not exceed 90°F. The cooling system shall be capable of continuously maintaining this level of performance up to and including exterior temperatures at the 1% summertime design basis.

Temperature shall be controlled by digital programmable thermostats. The HVAC system shall be SCADA monitored (alarm/report) for high temperature, air handler failure, and condensing unit failure. Thermostats shall be SCADA interfaced for remote temperature control. Air balancing of the HVAC system shall result in a positive air pressure to help prevent dust and bugs from entering the house.

11.17.2 Monitoring and Alarm System

The signal houses shall be equipped with local monitoring indications and provisions for SCADA. When installed, the system shall enable monitoring of equipment status and alarms, and other control functions as directed by the OCC.

A smoke detector system shall be provided within the signal house. The smoke detection system shall be annunciated locally and remotely.

An emergency eye-wash unit shall be provided, suitably located inside the signal house enclosure.

Two portable fire extinguishers shall be provided in the signal house.

The signal houses are normally unattended, and the design shall provide reasonable protection against intruders and vandalism. An intrusion detection system shall be installed, with motion sensors provided for each entry door. Any intrusion shall be made immediately known to the OCC. Each side of the house shall be monitored by a CCTV camera.

11.17.3 Interior and Exterior Lighting

Provide LED indoor lighting, controlled by light switches wall-mounted inside the housing near the doorways. The design shall provide for minimum maintained lighting levels of 30 foot-candles vertical, average. Lighting shall illuminate the vertical surfaces of the equipment and shall be located so as not to create a glare on the front of the equipment. Locations of lighting fixtures shall be coordinated to avoid interference with overhead raceways or other major wiring and shall not be directly above racks and equipment. Emergency lighting shall be provided via a self-contained, modular battery-unit inverter factory-mounted integral with the fixture body and capable of providing 1100 lamp lumen output from one or two lamps.
Outdoor lighting type shall conform to the requirements of the authority having jurisdiction. At a minimum the lighting design shall provide a minimum illumination level of two foot-candles at ground level or as required by the local authority having jurisdiction. The lighting levels shall be attained with not more than three fixtures mounted on each exterior wall. Address lighting is required in some cities.

11.17.4 Telephone and Data

A telephone shall be installed within the signal house for use by authorized personnel (refer to Chapter 12, Communications). The telephone service shall be limited to calls within the transit system telephone network and allow for 911 calls. Data access providing TCP/IP connectivity via 10/100/1000 Base-T Ethernet ports shall also be provided within the signal house for use by authorized personnel.

11.17.5 Work Table

A combination work table/cabinet shall be included against the wall within the signal house. Shelving and cubbyholes shall be included beneath the work table for the storage of binders, drawings, and small tools.

11.18 Wayside Cases

Signal system equipment may be installed in wayside cases, if necessary. Cases shall:

- Be pre-fabricated, pre-wired, and sized to accommodate all equipment required to operate that part of the system for which it will be designed, including necessary provisions for future growth and expansion.
- Provide sufficient space for the installation of Communications System equipment, where applicable.
- Provide with air conditioning for equipment protection. Include a condensation seepage pit for the site.
- Provide a weatherproof auxiliary power outlet on the exterior that shall permit connection of a generator to provide backup power beyond what is provided by battery backup. The outlet type shall be compatible with existing Valley Metro equipment. Provide interlocked breakers to prevent back feed to the primary power source.
- Provide alarm switches, interfaced to the SCADA System to alert OCC when a case door is opened.
- Provide 120 VAC, 60 W lighting fixtures with insulated pull chains and one duplex convenience outlet with GFI inside each door section.
- Provide battery backup.
- Provide ground detection.
11.19 Installation

All Signal System equipment shall be installed in conformance with all applicable parts of the AREMA C&S Manual of Recommended Practices.

11.20 Quality, Reliability and Maintainability

11.21 Systems Integration

The Signal System shall design shall be coordinated with the Operations Plan, the LRT system civil work, the traction power system and other systems disciplines (i.e. vehicles and communications). The Designer shall implement a systems integration design program in accordance with the requirements of Chapter 21, System Integration.
12.0 COMMUNICATIONS

12.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the Communications System and associated subsystems, and their relationship to other system-wide elements for future expansion of the Valley Metro LRT System.

The existing Communications System consists of the following subsystems and/or functions provided as part of previous contracts for the operational requirements of the existing Valley Metro LRT system. The following subsystems shall also be considered part of any future expanded Communications System as designed for LRT extensions:

- Voice Radio
- Data Radio (WiMax)
- Telephone
- Public Address (PA)
- Variable Message Boards (VMB)
- Closed Circuit Television (CCTV)
- Carrier Transmission System (CTS)
- Supervisory Control and Data Acquisition Subsystem (SCADA)
- Central Control System (CCS)
- Interface to Access Control and Intrusion Detection Subsystems and transmission of data from field sites to Operations Control Center (OCC)
- Interface to Fire Detection and Suppression Monitoring systems and transmission of data from field sites to OCC
- Interface to the Fare Collection and Ticket Vending Equipment and transmission of data from field sites to the OCC and Automated Fare Collection System (AFCS) computer equipment.
- Central Control Consoles and Displays

The existing OCC contains communications apparatus and operating personnel for the overall safety and security of passengers and the daily operation of the trains, stations/stops, and all wayside apparatus. The OCC is the focal point from which Valley Metro LRT operations are supervised, regulated and controlled. Chapter 7, Operations, includes additional operational requirements of the OCC. The Communications Systems identified herein are required for the full operating Valley Metro LRT system plus future expansion.

Future LRT expansion designs shall be fully compatible and integrated with existing systems and shall not degrade the performance of any existing communications system. Designers shall
consult Standard Specifications and as-built documentation for interface, functionality and performance information of all communications systems.

12.1.1 Codes and Standards

LRT Communications Systems shall adhere to, conform, or otherwise comply with the most recent federal, state, and local laws, regulations and directives including, but not limited to the following:

- Department of Homeland Security (DHS).
- Federal Communications Commission (FCC).
- Federal Transit Administration (FTA).
- National Intelligent Transportation Systems Architecture (ITS).
- National Fire Protection Association (NFPA).
- The Americans with Disabilities Act (ADA).
- National Electrical Code (NEC).
- Underwriters' Laboratories, Inc. (UL).
- International Organization of Standardization (ISO).
- American National Standards Institute (ANSI)/Insulated Cable Engineers Associations (ICEA).
- Electronic Industries Association (EIA)/Telecommunications Industry Association (TIA).
- National Electrical Manufacturers Association (NEMA).
- Institute of Electrical and Electronics Engineers (IEEE).
- Metro Ethernet Forum (MEF)
- Internet Engineering Task Force (IETF).

12.2 Communications Subsystems

12.2.1 Radio

Radio transmission shall provide the primary media for centralized voice and data communications with trains, voice communications between and amongst separate Agency functional organizations, and to provide communications in areas where it is impracticable to provide communications via direct cabling.

12.2.1.1 Voice Radio

The voice radio subsystem shall provide two-way communications for rail operations, maintenance operations, line supervisors, and transit police.
The voice infrastructure to be utilized may include use of any combination of the existing Local or Regional Radio Networks, existing or new remote radio repeater sites, dedicated VHF/UHF or any of 700/800/900 MHz band radio channels or any combination thereof, or any other licensed or unlicensed types of local wireless networks (carrier grade cellular, Wi-Fi or WiMax) and linkages between the OCC and remote sites. Appropriate design consideration shall be given to new broadband wireless applications, particularly voice over IP (VoIP) technology. The radio system shall include multi-channel trunked voice and control data radio transmission channels, and shall provide full coverage throughout the existing and planned LRT operational areas as defined by Valley Metro.

The Voice Radio System shall provide User Groups within the trunked system for the following Valley Metro LRT users:

- Line Operations
- Yard Operations
- Maintenance
- Supervisors
- Transit Police/Security

12.2.1.2 Data Radio
The data radio subsystem shall provide two-way real-time communications between LRT vehicles and the SCADA subsystem for operations use at the OCC and other identified locations.

The data radio system shall employ the technology known as WiMax (Worldwide Interoperability for Microwave Access), integrated with the SCADA system, to perform train tracking. The Design shall include the new infrastructure and equipment required to support all functions of the system for the future extensions of the Valley Metro LRT System. Preliminary WiMax requirements are as follows. Details shall be coordinated with Valley Metro during the PE phase.

System Requirements: The system design shall:

- Be based on the IEEE802.16e-2005 mobile Worldwide Interoperability for Microwave Access (WiMAX) broadband standard and support Time Division Duplex (TDD) operation;
- Operate and support mobility without an Access Service Network (ASN) gateway;
- Support Quality of Service (QoS) to give user ability to separate traffic types;
- Operate in the 3650 – 3700 MHz band and be approved to operate across the entire 50MHz band allocated by the Federal Communications Commission (FCC);
- Utilize 5 MHz Channel Band Width or wider;
- Be designed to avoid interference with nearby systems utilizing the same band;
• Utilize transmit and receive diversity to improve and enhance Non-Line of Sight (nLoS) performance;

• Be designed for a threshold of -80 dBm in open space environment.

• The percentage of time for coverage of the service area above the threshold level (as an indication of the design compensation for the time variations of the received signal) shall be 99%;

• Include no more than an 80 msec end-to-end latency in the radio link after the subscriber unit associates with the base station and when the subscriber is stationary, and;

• System availability shall exceed 99.9%.

Base Station Requirements:

• Base stations shall be installed within Valley Metro right-of-way, preferably in station Communications cabinets, or other locations within or controlled by Valley Metro.

• Base station shall be interface with the CTS System to transmit data to the OCC.

• Base Station shall be powered by a Ruggized Power over Ethernet (PoE) power supply, backed up via UPS.

• Base stations shall be provided with low loss coaxial cable, shielded CAT5 cable, RF lightning arrestors, 2-way splitters (if necessary), data surge arrestors, and any other equipment necessary to provide a complete installation.

• Antennas shall be 30 degrees or less narrow-beam, mounted on station structures no more than 40 feet above ground level, unless otherwise approved by Valley Metro. Omni-directional or 90 degrees beam width sector antennas shall be used where required.

Vehicle Subscriber Unit Requirements:

• Subscriber units shall be installed on-board the LRV, in an indoor cabinet with sufficient space to accommodate the subscriber unit, power supply, antennas, cables, and ancillary equipment.

• Two omni-directional rail rated antennas, connected via low loss coaxial cables, shall be provided on top of the LRV. RF Lightning Arrestors shall be provided, if necessary.

• Subscriber units shall interface to the LRV network via a L3 switch, using shielded CAT5 cables and data surge arrestors.

• Subscriber unit shall be DC powered, operating from the LRV’s low voltage power supply.

The data radio system shall be used for real-time monitoring of health/performance status and location of the Light Rail Vehicles, real-time on-board video broadcasting and for wireless transmissions of data required to support VMS components on-board the trains. This information shall be periodically transmitted and recorded at the OCC. The information shall be accessible to OCC and LRV maintenance personnel.
Data applications foreseen are:

- Transmissions of the text messages between OCC and all in-service LRVs, including but not limited to the VMS real time vehicle health/performance status, alarms/indications text messages, passenger information text messages broadcasted to a single train, selectable combination of, or all trains in-service/fleet for real-time display on the on-board visual message signs, train operator sign-on/sign-off, automatic vehicle location and GPS data.

- Real-time passenger boarding information (or Automated Passenger Counting) and other on-board vehicle subsystem information that can be generated in a text or other compatible message format and transmitted to a defined location within the network.

- On-board real-time digital video broadcasting to OCC and specially defined emergency response sites in order to facilitate real-time monitoring of the safety and security on-board the train in-service or during the critical/emergency conditions.

- Creation of on-board train Wireless Internet access points.

- On-board advertising and information-based media content or programming that also includes entertainment (infotainment).

12.2.1.3 Coverage Design Criteria

The voice radio system shall provide coverage throughout 95% of the service area, 98% of the time, including the areas along any new Right-of-Way (ROW), existing LRT alignments, and future extensions of the LRT (minimum 3 miles from each side of the Center Line (CL) of any track), for all at grade and above grade Valley Metro facilities, underpasses, tunnel and depressed Right-of-Way (ROW) sections, in the OCC, at the passenger stations, for all operational and stored LRVs, in the Maintenance and Service Facilities, and to portable equipment throughout the defined service area.

The field signal levels required to meet the voice radio coverage requirements, from/to all locations, shall be above the receiver's 12 dB SINAD sensitivity threshold as required to achieve a minimum Delivered Audio Quality (DAQ) of 3.4 or a Bit Error Rate (BER) of less than 2% (ref: TIA TSB-88B), measured at the input to the receiver’s RF port. A portable receiver shall be the basis for design of radio system upgrades/expansions.

The implementation of additional channels and radio sites shall be contingent upon business needs, light rail system expansion, budget allocation, and availability of frequency licenses (as a result of any frequency use and allocation changes mandated by the Federal Communications Commission (FCC)). Any new frequency allocations should be governed by the FCC rules in place at the time of the final design of the future Valley Metro LRT System extension, as well as the aforementioned conditions.

Where the over the air signal is inadequate for the voice system (tunnels, underpasses and depressed ROW sections), a radiating coaxial cable antenna or Distributed Antenna System, repeater or base station equipment shall be used. The radiating coaxial cable shall be jacketed with a fire-retardant, halogen-free material. A distributed amplifier system shall be utilized as appropriate to minimize new base station requirements. FCC rules for intermodulation power
and emissions from tunnel portals shall be utilized. The most current FCC bandwidth rules in effect at contract award shall be followed.

When radio coverage is extended, the Valley Metro LRT CTS is the preferred path to connect the central radio system audio to the base station/repeater, remote receiver, or voting sites, as applicable. If CTS channels are not available, an alternate path such as microwave or leased lines shall be employed in the design, subject to Valley Metro approval.

The data radio system shall provide coverage throughout 95% of the service area, with no lapses in coverage greater than 1 second at terminals, crossovers, and other critical areas as deemed necessary by Valley Metro; and 2.5 seconds for any other location on the alignment, at the revenue operation vehicle speeds. The Designer shall perform a coverage study to substantiate the design. A final coverage study shall be performed by the Contractor to demonstrate compliance with the design criteria and final design.

12.2.1.4 Compatibility
Radio equipment installed on trains, in supervisors and maintainers vehicles, as well as portable radios issued by staff, and subscriber units for WiMax, shall be compatible with existing equipment. Radio dispatch consoles, compatible with existing equipment, shall be installed at designated control locations and integrated into the system controller or over the air interface.

12.3 Telephone
The existing telephone system is a Voice over Internet Protocol (VoIP) type system with centralized CISCO (e.g. Call Manager) equipment located at the Operations and Maintenance Center. This telephone system includes maintenance and administrative telephones, and emergency communications devices or Emergency Call Boxes (ECB). Maintenance and administrative telephones can be located on the station platform, park and ride areas, along the wayside, in the yard, and at the OCC. In addition to radio conversations, train control staff telephone conversations shall be recorded. All future LRT System telephones shall be served as subscribers of this VoIP system. Future telephone system equipment (local and remote) provided as part of LRT expansion projects shall be fully compatible with existing equipment and capable of switching Voice over IP (VoIP) based subscriber lines. Telephone instruments shall be designed for native IP operation or provided with appropriate VoIP conversion equipment.

An existing voice recorder subsystem was provided as part of the VoIP telephone system with equipment located at the Operations and Maintenance Center. This subsystem records all voice radio conversations, Emergency Call Boxes and selected telephone lines of OCC and other staff telephone conversations. LRT expansion projects shall upgrade or replace this system as needed to increase the capacity of this system as required.

Administrative telephones shall be installed in all office areas and locations accessible to operating personnel. These phones shall also be installed at the Maintenance-Of-Way (MOW) facilities and in the vehicle Maintenance Of Equipment (MOE) facility. Maintenance telephones shall be installed at strategic locations along the wayside where system equipment is located, such as at signal houses and traction power substations (TPSS).
Emergency callboxes (ECB) shall be installed on station platforms and at park and ride lots and shall be used to establish emergency communications with the Operations Control Center. ECB’s shall be hands-free and shall not employ a handset. ECB’s shall be activated by pushing a single button, shall not require a fare, and, upon activation, shall automatically dial stored telephone numbers (primary and two fallbacks). OCC operators shall have the capability of determining the calling station location through display telephones and standard caller identification information. ECB locations shall be clearly marked with a constant blue-light beacon and shall incorporate emergency graphics on the exterior of the enclosure or housing. CCTV coverage shall be provided for each ECB location. When the ECB is activated, the blue light shall strobe and produce an audible alarm to indicate that an emergency situation is occurring.

Telephones intended for public use by passengers such as ECB’s, shall be fully compliant with federal, state, and local laws and guidelines, such as the Americans with Disabilities Act (ADA). ECBs shall be UL listed as an assembly.

12.3.1 Public Address

The existing Public Address (PA) system has centralized application server equipment located at the OCC and the Backup Control Center, and amplification, processing and reproduction equipment located at passenger stations, Operations and Maintenance Center and other facilities. LRT expansion projects shall upgrade or replace equipment as needed to increase the capacity of stored message databases and related application server equipment as required.

LRT expansion projects shall provide PA messaging services at all identified passenger stations and other identified facilities. The PA subsystem shall be used to provide routine announcements and emergency warning information. The generation of messages for announcement at selected locations shall be provided locally via preprogrammed, stored messages, remotely via transmission over TCP/IP LAN/WAN connection through the CTS, and via real time terminal input.

The PA subsystem shall provide uniformly distributed audio, or sound pressure levels (SPL), throughout passenger stations, yard and shops, and OCC office areas. The PA speaker layout at any new station and conduit layouts at other stations shall be designed for a uniformly distributed minimum sound pressure level of 80 A-weighted decibels (dBA) at a height of 5 ft above the floor on passenger station platforms. On station platforms the coverage shall be uniform level over 90% of the open platform area. Station platform minimum levels shall be obtained when trains are not operating and when the ambient noise level is minimal. The SPL shall be automatically adjustable based on ambient noise to a maximum of 115 dBA. At locations with high background noise levels, speech processing shall be used to enhance the performance and intelligibility. Voice intelligibility shall meet or exceed the minimum standards set forth NFPA 72. Sound trespass to areas adjacent to stations shall be minimized to meet local ordinances or adjustable to levels approved by the authority having jurisdiction.

The audio inputs shall be prioritized from OCC, pre-recorded devices, equipment rooms, and dial access from the telephone subsystem. The PA subsystem shall interface with the Variable Message Boards at all passenger stations such that messages and announcements are
simultaneously delivered by both systems. Live messages shall be delivered by the PA subsystem only.

The system shall include the capability of text-to-voice conversion and transmission for all ad-hoc messages to ensure clear, consistent audio delivery of messages created by different operators. The system shall include provisions for messaging in English and Spanish and have the capacity to add up to 5 more languages, each with identical message storage capacity as the Spanish/English formats.

PA designs at passenger stations identified by Valley Metro shall include a wireless microphone receiver to allow voice announcements to be made by roving staff during time-critical incident management situations. PA systems at maintenance and storage facilities and yard control offices shall only be provided with local control and may be integrated with the telephone system. Any modifications, upgrades, or additions to the existing PA system shall be compatible with the head-end control and management system and protocols currently used.

12.3.2 Variable Message Boards

The Variable Message Boards (VMB) subsystem shall be provided at selected locations in passenger stations to provide, in compliance with the ADA Standards for Accessible Design for the hearing impaired, operational and safety-related messages for patron awareness.

The generation of messages for display at selected locations shall be provided locally via preprogrammed format, remotely via transmission over TCP/IP LAN/WAN connection through the CTS, and via real time terminal input. Where the VMB and PA systems are integrated, the displays shall be coordinated and simultaneous with the preprogrammed announcements being broadcast by the PA subsystem. Automated announcements shall include display of passenger information such as train destination, next train identification at terminal stations, and time of arrival of approaching trains. Where applicable, the VMB subsystem shall interface with the LRT Signaling System, Vehicle Management System (VMS), and/or the SCADA subsystem to activate the applicable passenger information message announcements at each respective station’s VMB.

The Visual Message Boards shall be placed in locations to afford maximum achievable visibility from all parts of the station while complying with ergonomic and guidelines and the ADA Standards for Accessible Design. This includes quantities, height, and distance from platform ends as well as individual VMB character height, characters per line, viewing angle, pixel size, pitch, and color.

Any modifications, upgrades, or additions to the existing PA system shall be compatible with the head-end control and management system and protocols currently used.

12.3.3 Closed Circuit Television

The CCTV subsystem shall provide operational surveillance of designated passenger stations, park-and-rides, and transit center areas as well as operational surveillance and security of Valley Metro operations, yard, maintenance shop, signal buildings, TPSS, storage facilities, and critical LRT approaches and/or segments.
Cameras shall be fixed view, trained to monitor entrances, fare vending equipment, emergency call-boxes, platform approaches, and platform waiting/boarding areas. Cameras shall also be deployed to monitor park-and-ride lots. Depending upon lot configuration, the cameras may be equipped with remote pan-tilt-zoom control from the OCC, local security building or other identified location. Camera types and placement shall be consistent with the most current expansions of the system, unless otherwise approved by Valley Metro. All locations shall include equipment to encode camera signals for transmission to the OCC, and to other locations as directed by Valley Metro, via the CTS.

All cameras provided shall have a minimum native resolution of 480 TV lines. Video from cameras shall be encoded, transmitted and recorded at a minimum of 15 frames per second (fps), and at a minimum resolution of 4CIF. The most efficient and/or latest available standard for video encoding and compression with a bandwidth efficient high compression rate (e.g. H.264 or better and compliant with existing system) shall be employed to encode and transmit video over the CTS.

The video recording subsystem shall provide decentralized monitoring and recording capability using Network Video Recorder (NVR) technology. The NVR collects all video transmitted from cameras and records, indexes, and archives this real-time video for a period of 30 days. Recorded video quality shall not be deteriorated or compromised as a result of encoding, transmission and recording. The NVR shall provide for archiving of selected stored video beyond 30 days on DVD disk or other media acceptable to Valley Metro.

NVR equipment provided with expansion projects shall be designed to expand the recording capacity to maintain the 30 day recording capacity following the addition of cameras. This can be accomplished by adding or replacing equipment. Recording shall be performed at the highest resolution and frame rate.

LRT expansion projects shall upgrade or replace equipment as needed to increase the capacity of video storage and related equipment as required to add cameras for extensions. CCTV cameras, encoders, video recorders and other equipment provided for LRT expansion projects shall be fully compatible with existing CCTV equipment.

Transmission of video to OCC and other identified locations shall not affect SCADA network or revenue operations. In the event bandwidth requirements exceed the available bandwidth, the design shall be altered to either separate the networks so that there is no contention, or a Quality of Service (QOS) system is developed and deployed to ensure revenue operations are not affected.

The system shall perform dual video streaming, software based active advanced video analytics, and surveillance and analysis of any video signal. Examples of such features include differential frame analysis to detect suspicious or unauthorized objects, motion detection, PTZ function automatic tracking, and facial recognition programs.

12.3.4 Carrier Transmission Subsystem

The existing Carrier Transmission Subsystem (CTS) is a communications network that provides a common backbone for Valley Metro LRT communications providing the means of transmitting
information from remote locations to the OCC for processing and display and the means of transmitting information to remote locations to control equipment in the field.

The CTS main backbone shall be a network of fully redundant, self-healing rings transmitted over fiber optic media and shall be based on Carrier Class Gigabit Ethernet (Gig-E) technology. The CTS network shall be based on Multi Protocol Label Switching (MPLS), which is an IETF connection-oriented technology. The fail-over time for each network ring shall be less than 50 ms.

The CTS network in service for the LRT system consists of four (4) 1 Gbs rings and two (2) 10 GPS rings. Ring speed for all new extensions shall be a minimum of 10Gbps. Core Ethernet Switches shall provide Layer 2 and Layer 3 capabilities for the CTS. The rings shall provide sufficient communications bandwidth to accommodate the expansion, and all foreseen future expansion. The network shall be designed for optimal transport of multiple simultaneous applications such as voice, video, and other data services. Backbone line rates shall be in-service upgradeable to provide additional bandwidth to the ring. Network expansion shall be implemented by in-service addition of nodes to the ring or by adding new rings, as directed by Valley Metro, as the LRT system expands.

Nodes shall be installed at selected locations in environmentally controlled cabinets at each passenger station, in order to provide physical interfaces to all field equipment. These interfaces shall include, at a minimum 10/100/1000 Base T Ethernet ports providing TCP/IP protocol connectivity. Low-speed data applications shall be aggregated using port servers or other compatible premise equipment.

All core CTS common control card equipment such as CPU’s, switch matrices, timing reference cards, shelf controllers, power supplies and all other critical system resources shall be deployed with fully redundant active and standby modules.

All Station node CTS equipment shall have redundant power supplies.

An existing network management system was provided as part of previous contract which provides provisioning, monitoring, reporting, and managing of the CTS network. This system shall be upgraded and reconfigured as needed to accommodate LRT expansion projects.

The Local Area Network (LAN) shall implement active security measures, through hardware, software, or a combination of both to protect against internal and external unauthorized entry, information theft, misuse, virus and worm threats, DDoS attacks, and other potential security breaches consistent with the most recent Valley Metro information and network security policies.

Subnode equipment located along right-of-ways (such as TPSS and Signal facilities) and other LRT system locations shall be connected to nodes over fiber optic cable spokes, copper cable spokes, or a hybrid of fiber and copper cables using commercially available media and protocol conversion and transmission equipment. Both fiber and copper cables shall be designed to include a minimum of 50 percent spares for future use.

12.3.5 Supervisory Control and Data Acquisition

The existing Supervisory Control and Data Acquisition (SCADA) subsystem has application servers and other equipment located at the OCC. The SCADA subsystem monitors, acquires,
and transmits data and control inputs and outputs to a master central control system at the OCC to monitor and control certain functional areas of the LRT system via PLC based remote data terminal units (RTU).

Designers of LRT expansion projects shall upgrade the existing SCADA system equipment to expand capacity for new operating segments as required, without degrading the performance of the existing system. The SCADA subsystem shall transmit indications and alarms from remote sites to the OCC via the Carrier Transmission Subsystem. The SCADA subsystem shall provide supervisory control and indication of the following subsystems, functions, and locations:

- Traction power system alarm, indication, and control signals;
- Signal system alarm, indication, and control signals;
- Mechanical equipment and auxiliary power alarms and signals;
- Fire detection signals;
- Intrusion alarms for equipment rooms, cabinets, facilities, and fare collection equipment;
- Excessive Heat Detection (in wayside equipment shelters, TVM’s, signal houses and substations);
- Communications equipment and electronic equipment alarms;
- Miscellaneous system status and alarms (fare collection alarms, etc.);
- Passenger station, park-and-ride, transit centers, as applicable; and
- Tunnel, overpass, and underpass facilities, as applicable.

12.3.6 Central Control System (CCS)

The existing CCS system monitors, displays, controls, and reports all operational subsystems within the LRT system from the OCC as an integral function of the SCADA system. It provides status and location reporting, information storage and retrieval, event logging, alarm processing, incident and operations reporting for the following subsystems, at a minimum:

- Traction power subsystem
- Signaling subsystem, including train supervision and location reporting
- Communications subsystems, including PA/VMB
- Safety and Security subsystems, including fire and intrusion alarming
- Vehicle Management System (for Train location and Identification)

The CCS system is a client – server architecture, with redundant components, power conditioning, and protection schemes necessary to maintain 24x7x365 day operations.

System components employed in LRT expansion projects shall be fully compatible with the existing system.
Designers shall also modify/add/replace existing large overview displays, servers and related application servers and other equipment as needed, to accommodate expansion of the LRT system. Likewise, operator positions and workstations shall be added, as needed, to facilitate management and operation of additional line sections.

Passenger Assistance functions, including PA/VMB, shall be integrated applications within the CCS. The system shall allow seamless integration, patching, and local recording of all voice communications (telephone, radio, and paging).

VMS data shall be interpreted and integrated into the CCS to facilitate LRT vehicle reporting and geographical display. The SCADA subsystem shall supply the remaining input and output data required by the CCS for complete system management. Other systems, such as Access Control and CCTV, may be centrally controlled from the OCC, but not necessarily as an integral component or module of the CCS.

12.3.7 Access Control

The Access Control subsystem (ACS) shall provide centralized controlled access and personnel identification, monitoring, and alarming of designated doors, windows, portals, gates, and fences in the system to allow and detect authorized entry and prevent and alarm unauthorized intrusion in the Operations and Maintenance Center.

12.3.8 Fire Detection and Suppression Monitoring

The fire detection and suppression monitoring system (FD&SM) shall consist of all necessary control panels, detector devices, indicating devices and interface terminal points for the detection and annunciation of fires and monitoring of the fire suppression system at each LRT facility, as applicable.

The FD&SM system shall be configured to present the fire detection system fire alarms, fire alarm control panel and associated fire detector device status, fire suppression system equipment status, and suppression system alarms to the SCADA system.

12.3.8.1 Description

As a minimum, the fire detection system shall provide zoned alarms, local alarm annunciation, alarm contact closures, and necessary actuation’s to the SCADA system for annunciation at the OCC or other identified monitoring location.

12.3.8.2 Fire Detection

The intelligent fire detection system shall be capable of having multiple zone detection and cross-zone detection employed where fire suppression systems are furnished.

Smoke detection devices shall be of plug-in type configuration. The detection devices shall be plug-in interchangeable with other type detectors. Each smoke detector shall be equipped with an LED-indicating lamp to illuminate upon detector actuation.

Indicating devices shall be compliant with the ADA Standards for Accessible Design. Devices shall be installed per all applicable NFPA codes including Sections 12A, 72, 72-90 and 130, BDC latest editions, and per the local authority having jurisdiction (AHJ).
Heat detection devices shall be of plug-type configuration. Each heat detection device shall be a combination fixed temperature/rate-of-rise detector. Temperature rating shall be approved by the AHJ.

12.3.8.3 Suppression Monitoring
Suppression monitoring systems shall be capable of monitoring status and alarm conditions associated with fire suppression systems. Systems, as a minimum, shall be capable of monitoring status and alarm conditions for any type of suppression system (i.e., standpipe, sprinkler, gas) employed at each site. Alarms and indications such as pipe flow valve status, valve position status, system activation, and system trouble shall be monitored, detected, and reported to the SCADA system for annunciation at the OCC or other identified monitoring location.

12.3.8.4 Power
The fire detection and suppression monitoring system shall be powered directly from their respective control cabinets. Power shall be furnished in accordance with applicable NFPA Codes.

12.4 Uninterruptable Power Supplies
Station Systems, including Park and Ride Security Buildings, shall be provided with Uninterruptable Power Supply (UPS) units, integrated with batteries, within the station communications equipment cabinets or rooms. These units shall provide and maintain power to CTS, Telephone, CCTV, PA/VMB and SCADA equipment, plus 25 percent reserve capacity at their respective stations for a period not less than 2 hours in event of a power outage. Batteries provided for UPS units shall be sealed, gel-cell types.

All UPS units supplied shall be capable of providing power to their connected loads with batteries disconnected for servicing. UPSs’ shall be capable of recharging depleted batteries within a 24-hour period while simultaneously supplying power to their respective connected loads.

UPS units shall interconnect to the SCADA System to provide alarms for loss of incoming AC power, low battery reserve and UPS fault/trouble.

SCADA System equipment in Signal Buildings and Traction Power Substations shall be powered, and backed up by their respective power supply systems.

12.4.1 Systems Integration
The Communications System design shall be coordinated with the Operations Plan, the LRT system civil work, the traction power system and other systems disciplines (i.e. vehicles and signal system. The Designer shall implement a systems integration design program in accordance with the requirements of Chapter 21, System Integration.
13.0 FARE COLLECTION

13.1 Introduction

The purpose of this chapter is to establish the design standards and design policies for the Automated Fare Collection System (AFCS) of the Valley Metro Light Rail Transit System. It encompasses function-based design criteria related to fare collection. Fare collection methodology is a key determinant of the Valley Metro LRT System design as the methods employed will have a direct impact on the system throughput.

A Proof-of-Payment (POP) fare collection system is the selected method of establishing revenue control over the Valley Metro operating environment.

13.2 Design Objectives

The AFCS shall be designed in conformity with the prime objectives for the Valley Metro systems elements. The safety of the passengers, employees, and the neighboring communities shall be the first priority in the design of the Valley Metro systems elements. All other considerations shall be subordinate to the safety. Following safety, design of the Valley Metro AFCS shall give priority to operational reliability, passenger convenience, and cost-effectiveness, in that order.

13.3 Design Approach

13.3.1 System Conformity

The fare policy shall conform to the current regional fare structure employed by Valley Metro. It shall employ existing fare instruments or their functional equivalent to the maximum practical extent in order to avoid burdening the existing network with new types of fare instruments. The fare control system shall be adaptable to deal with the transfer opportunities offered along the LRT alignment, including full compatibility with bus fare collection systems. The full range of current payment options will need to be sustained in the Valley Metro fare policy and structure strategy without precluding consideration of other options.

13.3.2 LRT Fare Control

A POP fare collection system is the current method of fare collection and fare media distribution for Valley Metro. No fare collection takes place onboard the Light Rail Vehicle. Under a POP system, fare-paid areas are defined as part of the system-operating environment within which all passengers must be able to demonstrate that they have paid a proper fare. Any passenger in a fare paid area who is unable to demonstrate proof of fare payment is subject to removal and/or fine.

Passengers are required to purchase fares or validate/activate pre-purchased tickets at a station-based Ticket Vending Machine (TVM) both magnetic and smart card based) from an outside sales outlet. TVMs require separate conduits and cables to support both power and communications network requirements. The network connection shall support equipment monitoring and reporting, credit/debit card authorization and settlement, and system security.
functions. Validators integrated into the TVM shall validate fare media at the time of use that is not originally marked with time sensitive information. At least two TVMs shall be provided for each station in order to maximize the availability of equipment, and to allow patrons a nearby alternative for a single machine mechanical failure, ticket stock depletion, or revenue overflow. Additional TVMs shall be provided at high volume stations subject to significant peaking, as warranted by forecasted passenger demand.

13.4 Design Criteria

13.4.1 Fare Structure and Fare Media

The LRT fare structure shall be consistent and integrated with the regional fare polices and structures. The current structure provides for multiple levels of cash fares based on service type and passenger characteristics, and includes a variety of fare media and fare types. During the design, it shall be necessary to ensure that the fare structure employed by the Valley Metro is in conformance with current regional transit fare polices.

Fare collection equipment shall be capable of issuing a variety of fare types, and all shall be compatible with the existing regional fare collection system. Fare collection equipment shall be capable of accepting electronic “smart” fare cards (smart card media) and bank issued debit/credit payment media.

13.4.2 Fare Collection Equipment Types

A single type of fare equipment shall be permitted for use within the LRT System in order to provide operational consistency, flexibility, and system maintenance simplicity. Multiple configurations of a basic equipment type may be permitted, is approved by Valley Metro.

13.4.3 Fare Collection Equipment Location

The preferred location for the fare collection area for a center platform is at the main station entry in the “free” area. Most stations with side platforms require an independent fare collection area for each platform. To minimize platform congestion at high volume stations, fare collection areas may be located off-street and within a transit Park-and-Ride and Transit Center areas. Fare collection equipment shall be situated so that pedestrian circulation is not impeded, and patrons can easily identify the location and have easy access to fare collection equipment. Fare vending equipment shall be placed in locations that afford operators maximum response time to platform movements, clear sight triangles, and unobstructed views of approaching station platforms. Equipment locations shall not present a potential safety hazard with respect to patron interaction, patron security, or train operations.

Fare collection equipment user interfaces, particularly passenger displays, shall be oriented in such a way to avoid the effects of direct sunlight. Equipment location shall offer passenger protection from rain, direct sun, and other environmental elements through the use of shade canopies, shelter, or other appropriate means of protection. Placement of the fare collection equipment shall follow Crime Prevention Through Environmental Design (CPTED) guidelines (most current version).
If on-site manual fare sales are to be provided (e.g. at stations handling special event crowds), facilities must be in place to support temporary fare vending equipment (e.g. power, communications).

13.4.4 Fare Collection Equipment Quantities

The minimum number of TVMs required at a fare collection area is based on two (2) cash fare transactions per minute per TVM, or two TVMs per fare collection area, whichever is greater. The maximum number of cash fares to be accommodated shall be estimated based on 55 percent of the maximum number of boarding passengers during the peak 15-minutes (P_{15}) using that fare collection area.

Some station patron volumes may require additional vending equipment following initial start of revenue service to accommodate passenger loads anticipated during subsequent construction phases. Accommodations, such as conduit, junction boxes, pedestals, foundations, and future power and communications sources, for such growth shall be included in the initial station designs.

13.4.5 Installation Requirements and Restrictions

Fare collection equipment shall be installed on specially designed level concrete pads with anchor bolts, and grounding. Concrete pad design shall meet specific requirements provided by selected fare collection equipment vendor. Equipment shall be leveled as necessary by the installer and a weather-tight seal placed between the equipment and the concrete.

Equipment shall be conveniently located on or off the platforms and oriented so that passengers in queue to purchase fares shall not impede normal passenger flow between trains and the station and do not present a potential safety hazard, i.e. affect patron awareness of oncoming trains. Fare collection equipment user interfaces, particularly passenger displays, shall be oriented in such a way to avoid the effects of direct sunlight. Equipment locations shall offer passenger protection from rain, direct sun, and other environmental elements through the use of cover, shelter, or other appropriate means of protection.

Any fare collection equipment installed side-by-side shall be at least 12 inches apart to facilitate maintenance of one unit while not interfering with passengers using the adjacent unit. Location and orientation of the fare collection equipment units shall conform to all applicable ADA Standards for Accessible Design front and side access requirements. Units installed back-to-back may abut one another if permitted by the design.

13.4.6 Conduits and Cabling

Separate conduits shall be required for power and data communications to all fare collection equipment. All conduits shall be a minimum of one (1) inch diameter. Where initial and future equipment is planned for installation, water-tight junction boxes shall be embedded in the station platform, flush with the surface. Separate (or partitioned) junction boxes shall be provided for power and data to comply with the National Electrical Code. These junction boxes shall be adequately sized for all conductors, but no smaller than six (6) inches square, and shall be installed abutting one another so that the equipment pedestal covers both boxes.
Power conduits can be arranged in any configuration that shall meet the needs of the equipment. Communications cabling between the fare collection equipment and the communications enclosure shall be arranged in configurations so that either a multi-drop network or a point-to-point network can be installed.

Conduits shall also be routed to future fare collection equipment locations (pads).

Power and communications cables shall be suitable for outdoor wet conditions. Both fiber and copper cables shall be designed to include a minimum of 50 percent spare capacity for future use.

13.4.7 General Equipment Requirements

13.4.7.1 Design Life

All fare collection equipment shall be designed for a minimum service life of 15 years of normal operations in Phoenix metropolitan area. All equipment shall operate seven days per week and 24 hours per day.

13.4.7.2 Codes and Standards

The fare collection equipment shall be designed to meet the latest revision of applicable codes including but not limited to:

- National Electrical Code (NEC), National Fire Protection Association ANSI/NFPA 70
- Underwriters Laboratories UL-571 “Vending Machines”.
- Americans with Disabilities Act (ADA) Standards for Accessible Design
- International Electrotechnical Commission Standard 529 (IEC 529), IP 34
- APTA Contactless Fare Media System Standard
- Payment Card Industry (PCI) Data Security Standard (PCI DSS)
- Payment Card Industry (PCI) Payment Application Data Security Standard (PA DSS)
- Local codes of authorities having jurisdiction.

13.4.7.3 Americans with Disabilities Act Standards for Accessible Design

The fare collection equipment shall comply with applicable requirements of the ADA Standards for Accessible Design. Fare equipment shall meet the rules in Title 49, Code of Federal Regulations, Part 37 resulting from the Americans with Disabilities Act. In particular, rules related to Automated Teller Machines (49CFR37, Appendix A, Section 4.34) and appended guidelines for Controls and Operating Mechanisms (Appendix Section A4.27) must be addressed in the fare collection equipment design. In addition, the fare collection equipment shall provide digitally recorded voice messages that “read” the contents of the patron display to assist visually impaired and illiterate patrons through the transaction process.
13.4.7.4 Climate and Environment
The fare collection equipment shall be installed in locations to avoid the effects of direct sunlight but shall be designed to operate without shelter or shading facilities between an ambient temperature range of 25°F to 135°F. In the summer, direct sunlight conditions can cause the inside temperature of equipment enclosures to rise considerably above ambient, up to 175°F has been measured, therefore suitable air conditioning equipment shall be provided to maintain internal temperature below 90°F. The fare collection equipment provided shall continue to operate without impairment resulting from any natural or induced environmental condition (water intrusion, condensation, vibrations, etc.) within which the equipment will be used. The fare collection equipment shall provide resistance to liquid ingress caused by driving rain and incidentally splashed water such as would occur during routine equipment and/or platform cleaning. In areas where openings permit the entry of water, additional measures shall be taken (e.g., EX conformal coating of boards). The fare collection equipment design shall also provide measures to limit and drain water condensation.

The fare collection equipment, including all interior mounted components, shall resist shock and vibration specified as follows:

- Shock-Intermittent
- Acceleration up to 1m/s²
- Duration up to 20 ms
- Half sine wave
- Repeated intervals ≥ 1s
- Vibration-continuous
- Frequency range from 0 to 6Hz
- Constant acceleration amplitude level up to 0.1m/s²

13.4.7.5 Electrical Design Requirements
All electrical designs shall comply with UL Standard 751, “Vending Machines,” NFPA 70, “National Electric Code,” and applicable guidelines, codes, or standards of the authority having jurisdiction. TVMs shall be UL listed as an assembly.

Fare collection equipment shall be powered by 120 VAC 60 Hz power, and shall tolerate a minimum of ±10% fluctuations in voltage and frequency normally found in the commercial power grid. Each individual TVM unit shall draw no more than 30 Amps, with integrated validator. Each fare collection equipment unit shall be connected to separate, individual circuit breakers in the power distribution cabinet or panel. A second interlocked power feed shall be provided for each TVM air conditioning unit. Breaker sizing shall be consistent with equipment and wiring requirements.

Separate ground wires, tied to the station common ground grid, shall be provided for conduit and each piece of fare collection equipment.
Fare collection equipment shall be protected against transients and surges using circuit breakers and other protective circuitry.

All equipment shall be designed within FCC guidelines for emitted radiation, and shall be immune to electro-magnetic interference found in the urban electrified passenger railroad wayside transit environments.

13.4.7.6 Transaction Speeds

Cash Transactions: The assumed speed of TVM transactions is a critical parameter in the calculations used to determine the number of units required at each platform. Transaction time is calculated as the time from completion of the fare selection to when the fare pass and all change are deposited in the ticket/coin bin.

Assuming all inserted coins and bills are accepted on the first insertion and all transactions are for the purchase of a single fare, the time required to complete the following sample transactions shall not exceed the following.

<table>
<thead>
<tr>
<th>Sample Transaction Content</th>
<th>Maximum Time to Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>One bill inserted Two coins returned</td>
<td>12 seconds</td>
</tr>
<tr>
<td>Four coins inserted Two coins returned</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Two bills inserted Four coins returned</td>
<td>15 seconds</td>
</tr>
<tr>
<td>One bill inserted Four coins inserted Two coins returned</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Five bills inserted Four coins returned</td>
<td>21 seconds</td>
</tr>
<tr>
<td>Credit/Debit Card Transaction</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Smart Card Transaction</td>
<td>5 Seconds</td>
</tr>
</tbody>
</table>

In addition, for all varieties of transactions listed above, the time between the completion of the transaction (when all coins and fare pass are deposited in the ticket/coin return bin) and the TVM is available to begin another transaction shall not exceed 3 seconds.

If a transaction is canceled by the patron before money has been deposited the TVM shall immediately return to the idle screen. If a transaction is canceled after money has been deposited and before the first pass is printed, all money shall be returned and the TVM shall resume its idle condition within 5 seconds after return of the money.
Where possible, TVM speed shall be optimized by the use of concurrent activities. For example:

- Dispensing of change shall occur concurrently with the transfer of any inserted bills from the bill escrow into the bill vault.
- If change requirements call for dispensing coins from both, the re-circulating coin system and the hoppers, both devices shall be activated sequentially
- If a canceled transaction requires the return of coins and bills, both the coin and bill systems shall be commanded to do so simultaneously.

Bank Card Transactions: Transaction time for bank card transactions, measured from the time a card is inserted into the TVM to the time a ticket is dispensed, shall not exceed 5 seconds (excluding PIN entry time and clearing house processing time).

Smart Card Transactions: Transaction time for smart card transactions, measured from when a smart card is presented to the smart card reader (target) and the time when fare collection unit completed this transaction (read and write cycle included) shall not exceed 5 seconds.

13.4.7.7 Modularity and Maintainability

Design of the Fare Collection Equipment shall require reliable operation of all components, sub-assemblies, modules and assemblies over their operational life, and minimization and simplification of preventive and corrective maintenance functions. All parts, components, modules, assemblies, and removable devices shall be interchangeable among same type of the fare collection equipment without the need to make adjustment for proper compatibility. All replaceable devices shall combine mounting designed for simple removal/exchange and easy access to facilitate maintenance.

Guide rails shall be used to facilitate fast removal and replacement of the modules and components. Adequate space shall be design to fit keys and service tools; to grasp, lift and turn internal modules and components; to remove and replace sub-assemblies and assemblies, units and components, connections and cables, and fare media stock. The weight of the internal components, sub-assemblies, assemblies, modules, etc. that must be lifted, moved and removed during the service, except coin and bill vaults, full coin storage modules, shall not exceed 40 pounds. All maintenance and service access to fare collection equipment components shall be through the front door of the unit.

For ease of service, all electrical connections between and within components shall be established by means of plug-in connectors to allow rapid removal of a component and/or subassembly from the cabinet.

Equipment software logic shall include a diagnostic capability that shall identify defective modules. Faults shall be self-diagnosing and reported by event with detailed error codes. Maintenance information shall be retained internally and also sent to the Central Computer System (CCS).

There shall be an interior cabinet light to aid maintenance and service personnel, which shall automatically illuminate each time the cabinet door is opened.
13.4.7.8 Reliability
Fare Collection Equipment shall be of service-proven design with acceptable performance in revenue service of at least two years. The equipment shall have minimum 15 years design life.

After 270 days of revenue service and when averaged over all in-service units for the previous 270 days, the fare collection equipment shall exhibit a failure rate of not more than one failure per unit per three (3) months or no more than one failure per 14,000 transactions.

13.4.7.9 Safety
The Fare Collection Equipment shall be free from hazards. The exterior surfaces of fare collection equipment, including all controls and appurtenances, shall have no sharp edges. The cabinet shall have no protrusions extending beyond its vertical surfaces that could be bumped by persons with a visual impairment or by a person passing by or using the TVM. All interior surfaces and components with which patrons and/or maintenance personnel could come in contact shall be free of sharp edges or other hazards.

All components shall be bonded and grounded and prevent electrical leakage or static charge. Electrical components shall have suitable warning graphics indicating the voltage present and other hazards.

13.4.7.10 Security
The design and installation of the fare collection equipment shall discourage and minimize the effects of vandalism and theft, prevent unauthorized access to the interior of the equipment, and prevent unauthorized removal of the equipment from its installed location.

The equipment designs shall also provide discrete levels of access to the interior of the equipment for maintenance personnel, revenue servicing personnel, and money processing personnel at a revenue-counting facility. Vault access by authorized personnel shall use controlled keying and high security locks that are mounted to prevent tampering. TVM lock and exterior lock shall be keyed differently. Access to the TVM for maintenance functions shall not provide access to the money vaults.

Fare Collection Equipment locations shall be covered by the CCTV surveillance system. The device shall be fully compliant with federal, state and local laws and guidelines such the ADA Standards for Accessible Design. An exterior mirror(s) can be installed on the front door of the cabinet to increase security and customer comfort level.

All exterior doors shall be locked with at least a three-point latching device with a bascule bolt and a hook locking bar, or approved equivalent. All latches shall be secure and robust. All external screws and hinges must be covered. Security locks with profile catches must be used. Locks must be drill resistant, mounted flush with the outside surface of the door. Reinforcement must be provided at positions where there is danger of burglary. The customer display screen must be protected from vandalism by a fixed and transparent shield.

TVM shall be protected with an alarm system. The unit shall detect intrusions, panic button activations, and high internal temperatures and shall provide an alarm to the OCC via the SCADA system. In the event the door on the TVM should be opened without proper authorization, an audible alarm shall annunciate this condition locally at the machine and immediately send the
alarm message to the OCC via the SCADA System and to the CCS. All events shall be logged for future reference in both systems. The audible alarm shall be equipped with an electronic siren capable of emitting a sound level of minimum 95dB measure at a distance of five (5) feet from the unit front door.

Every TVM shall be design with a “silent” alarm. An internal momentary switch installed inside the unit cabinet shall allow an authorized service person to activate such alarm in case of emergency. This alarm shall not be visible when door is open or tagged as an alarm switch. Activation of the alarm shall provide direct notification to the OCC via the SCADA System. “Silent’ alarm activation shall not trigger activation of the siren. Integrity of the alarms communications link shall be automatically checked on a periodic basis to assure proper functionality.

Fare vending equipment shall be equipped with software adjustable tamper alarm. Alarm shall be set for an operational unit to detect frontal, rear or side impact exceeding acceleration pulses of 50 m/s² with a minimum duration of 15 msec along each axes.

13.4.8 Handheld Verifier

13.4.8.1 Operational Requirements

The AFCS design shall include Handheld Verifiers (HHV) to allow fare inspectors to interrogate and verify validity of fare media, including magnetic fare and smart cards.

The HHV shall be a portable unit, similar in size and form factor to a PDA class device. It shall be powered by a rechargeable battery system. Fare media data and inspection transactions shall be capable of being stored, batched, and forwarded, via docking the unit in a compatible cradle, to the CCS via the docking unit Ethernet port. The design may also include a build-in digital camera and a portable printer, compatible with the HHV.

13.4.9 Fare Vending Equipment

13.4.9.1 Operation

Each unit shall normally be ready to respond to a patron selection when it is in the idle condition. If the unit is not ready, all operating functions shall be disabled. A programmable user display screen and pushbuttons, shall be provided for patrons to complete all transaction. The display screen shall direct the user through the steps of the transaction with the user’s inputs being entered through pushbuttons. Under normal operation conditions, issuing fare media shall be consistent with existing TVM’s.

13.4.9.2 Enclosure

To minimize the effects of vandalism and direct sun, the fare vending equipment enclosure is to be of unpainted stainless steel with a random-orbital brushed finish. The enclosure shall consist of:

- The main cabinet, which houses all devices and modules
- The front door, which provides secured access to the main cabinet
- The pedestal, which provides support and the means of leveling the unit
- The light fixture, mounted atop of the main cabinet for illuminations of the front surface of the machine.
- Air conditioning system

The unit enclosure shall measure no more than 85 inches (height), 23 inches (depth), and 36 inches (width). The cabinet shall provide suitable resistance to vandalism and forced entry by utilizing rugged design, robust high-security locks and latches, blind hinges, and a minimum of pry points. Unit enclosures shall:

- Be free of sharp edges and burrs on all exterior surfaces including all controls and appurtenances
- Be built to resist damage to exterior cabinet and components due to abuse and vandalism and shall further protect all accessible components of the unit from unauthorized entry
- Not contain screws or hinges accessible from the exterior
- Ensure all metal parts that can be contacted by patrons are electrically grounded.

All power and communications wiring shall be routed to the main cabinet through the pedestal. Maintenance access panels shall be provided in adequate quantities and locations on the enclosure to allow ease of maintenance to all internal system components as well as conduits, junction boxes, and cabling.

The TVM shall be UL listed as an assembly and fully comply with International Electrotechnical Commission standard 529 (IEC529) to level IP34 or equivalent.

13.4.9.3 User Interface
The user interface, limited exclusively to the front door, shall utilize alpha-numeric displays, multiple buttons, clear instructions and graphics, an ample fare media/coin return tray, and easily recognized coin, bill, and bank issued payment card insertion slots. The user interface shall be compliant with the ADA Standards for Accessible Design.

13.4.9.4 Passenger Display
The passenger user display shall be an actively enhanced high bright commercial grade amorphous silicon thin film transistor liquid crystal display (TFT LCD) with replaceable LED backlight. Display module shall be provided with a minimum resolution of 800 x 600 pixels (SVGA), high brightness (minimum 1000 nits), high contrast ratio (minimum 600:1), wide viewing angle, wide operating temperature, anti-glare and hard coating surface treatment. Display module shall be completely sunlight viewable, equipped with automatic dimming controls for those instances where low and high brightness must be attained during the day and night. Display module shall provide minimum 65º viewing angle perpendicular in all directions.

Display module for TVM shall have the ability to display text consistent with existing TVM’s. Each character shall be readable from the minimum viewing angle described above and in all ambient light conditions, including direct sunlight.
The passenger display shall be used to guide the passenger through the transaction with messages indicating the fare type selected, amount due (decrementing as money is inserted), status messages (such as ‘No Bills Accepted’), and other steps needed to complete a transaction. Messages shall be normally displayed in English, but the messages shall alternate between English and Spanish as the English/Spanish button is depressed. (English shall be the default language displayed.)

13.4.9.5 Recorded Voice Instructions
The fare collection equipment unit shall provide, on demand of the customer, audible voice instructions. The voice system shall utilize digitally recorded and stored human speech, or computer synthesized speech.

The TVM shall contain a vandal resistant speaker mounted inside the unit and its output shall be clearly audible from outside and in front of the TVM at all places within the minimum viewing envelope described above.

The messages shall be stored in digital form and be modifiable by downloading new data files from the CCS or locally at the unit. Messages shall be in English and Spanish. The message system shall have a total recording capacity of at least twenty (20) minutes for each language or all possible transaction instructions, whichever is greater.

13.4.9.6 Instructional Graphics
Adjacent to each button shall be ADA Standards for Accessible Design compliant raised letters and Braille describing the button’s function, or in the case of the variably defined selection buttons, a numeric label. The text shall be in English and Spanish; Braille shall be in English only. Each button’s label shall be made of embossed stainless steel and be independently replaceable. All instructional graphics shall be vandal resistant and resist efforts at peeling and unauthorized removal.

Similar raised letter and Braille labels shall be in close proximity to the coin, bill, and credit/debit card insertion slots, and above the change tray. Additionally, pictographs and other instructional text shall be situated near the fare collection equipment controls to facilitate passengers’ understanding of the machine.

13.4.9.7 Change Tray
All returned coins (rejected coins or change) and dispensed fare media shall be deposited in the change tray. A clear polycarbonate door that swings in with minimal pressure of the hand shall protect the tray. Even those passengers with large hands shall easily retrieve fare media and change. One or more drain holes shall direct any deposited liquids safely out of the machine.

13.4.9.8 Coin System
The coin system shall consist of four major components as described below. All coins in the system shall be stored in sturdy containers with high-security locks that are to be opened only in the cash counting facility.

13.4.9.9 Coin Acceptor
The coin acceptor shall process inserted coins, identify valid coins, and reject foreign coins and material. The acceptor shall be capable of identifying at least eight different coins, and shall be
initially programmed to accept US 5¢, 10¢, 25¢, and $1 coins (including all available at the time of revenue operations special edition coins). Valid coins shall be accepted at least 98.5% of the time upon initial insertion. The coin acceptor shall be capable of processing inserted coins at a rate of at least one coin per second. A shutter that is opened only while the TVM is ready to accept coins shall protect the insert slot.

13.4.9.10 Coin Escrow and Recirculation Unit
Inserted and accepted coins shall be directed to an escrow area, capable of holding at least 20 coins, or directly to the coin recirculation unit. Upon cancellation of a transaction, the coin escrow shall return the identical coins deposited to the change tray.

When a transaction is successfully completed, deposited coins shall be stored in the recirculation units. At least one recirculation unit shall be provided for each accepted coin denomination; at least 70 coins of each denomination shall be stored in recirculation units. Coins in the recirculation units shall be the TVM primary source of change. When a coin type’s recirculation unit is full, excess coins shall be directed to the coin vault.

13.4.9.11 Coin Vault
Whenever a coin recirculation unit is full, excess deposited coins of that type shall be forwarded to a secure coin vault with a capacity of at least 300 cubic inches. The vault shall be designed so that once installed in a TVM, it cannot be reopened or reinstalled without first being emptied and reset in the cash counting facility. The coin system shall not function without a properly installed coin vault. The coin vault shall incorporate a means of automatically transmitting its serial number to the TVM. The TVM shall cease accepting coins when the coin vault is full however the TVM shall remain in service for bank note transactions.

13.4.9.12 Supplemental Coin Cassettes
The coin system shall include at least three (3) supplemental coin cassettes, each with a capacity minimum of 1,000 coins. The cassettes shall be secured in sturdy steel boxes and their contents shall be accessible only by personnel in the cash counting facility. When closed, the supplemental coin cassettes shall securely retain all coins during transport and normal handling. The cassettes shall dispense coins at a minimum rate of two (2) coins per second. The cassettes shall transmit a serial number to the TVM when properly installed.

When change is to be issued, the coin system shall attempt to dispense change in the least number of coins, utilizing first the coins in the ACM If a coin type required to issue change in the minimum number of coins is not available from the ACM but is available from the coin system shall utilize the cassette supply rather than issue change in more coins than necessary.

13.4.9.13 Exact Fare Only Mode
When insufficient coins are available in the recirculation units and cassettes to make the maximum possible change payout, the TVM shall enter “Exact Fare Only” mode. While in this mode, the TVM shall continue to accept coins.

13.4.9.14 Over Payment Mode
The TVM shall also be capable of accepting overpayment of a software configurable limit of up to one dollar in five-cent increments.
13.4.9.15 Bill System
The bill system shall consist of three major sub-components: bill acceptor, bill escrow, and bill vault. The bill acceptor shall be capable of recognizing one-dollar bills, and new and old $5, $10, and $20 bills. The TVM shall accept, validate, and retain only United States bank notes. Accepted bank notes shall be stacked and stored separate and apart from the coinage in a locked vault with a minimum capacity of 1,000 bills.

Bank notes shall be accepted in all four orientations. The bill validator shall reject foreign objects and all bank notes not in acceptable condition.

The bill system shall be removable and, when removed, the TVM shall remain in service for credit/debit and coin transactions.

The TVM shall contain a bill escrow unit that holds up to 15 bills consistent in operation with that of the coin escrow.

13.4.9.16 Fare Media Printing and Encoding System
The fare media printing and encoding system shall be capable of issuing fares that are compatible with the existing bus fare collection system. Using one or more printer/encoder modules fare collection equipment shall:

- Issue single-ride fare with encoded transfer information on paper or magnetically encoded fare media.
- Issue magnetically encoded fare media.

13.4.9.17 Fare Media Stocks
Each TVM shall accommodate a minimum of four (4) unique fare media stocks, including paper, paper-plastic compound (referred to as “triplex”) magnetically encoded roll. Fare media shall be in the form of rolls or stacks. Each roll or stack of fare media shall have a minimum capacity of 2,000 passes of standard credit-card size, using stock that is 0.007 to 0.01 inch thick. Single-ride fares can be issued on a paper stock.

13.4.9.18 Fare Media Printer/Encoder
The fare media printing and encoding system shall consist of one or more printers using direct thermal printing technology. For flexibility and enhanced security, the printer(s) shall be capable of printing graphics, reverse printing (white characters on black background), landscape or portrait mode, multiple size characters, and a variety of fonts. Printing resolution shall be at least 200 dots per inch. Information shall comply with Title 49, Code of Federal Regulations Part 37.

Information to be printed on fare media shall depend on the type of fare being purchased and shall include date, time, fare type, price, station name, equipment ID number, and sequence number.

The fare media printer/encoder(s) shall be capable of printing one pass every three seconds or less.

Magnetic information to be encoded by the printer/encoder(s) shall be compatible with the existing regional fare collection system. Encoded information shall be verified by the
encoder/printer(s) prior to the fare media being issued to the passenger. Fare media that fail magnetic verification shall be erased and captured in an internal media reject bin.

13.4.9.19 Fare Media Cutter
If fare media rolls are used, one or more self-sharpening cutters shall be employed by the printer/encoder system to cut individual passes from the stock. The cutter(s) shall be capable of cutting at least one million units/passes before needing replacement or sharpening.

13.4.9.20 Receipt Printer
Receipt printer shall be provided to print audit report and other internally generated reports used by maintenance and revenue service personnel. Receipt stock shall be blank stock in roll form with capacity to issue minimum 2,000 receipts per roll.

Credit/debit cards printed receipts, shall indicate, at a minimum, transaction date, time, price, location, cardholder’s name, last four digits of the account number, authorization number, TVM ID number, and shall accompany the fare media issued to the passenger.

13.4.9.21 Credit/Debit Card System
The credit/debit card system shall consist of three subcomponents: the card reader, PIN pad, and display. Cards to be accepted shall be determined at the outset of Final Design, and shall include a combination of major national, regional, and local credit/debit cards.

An insert/remove card reader shall be employed such that cards are not “captured” or stored during the transaction. Transactions using these types of payment shall have a maximum time to complete of 15 seconds.

13.4.9.22 Electronic Control Unit
The electronic control unit (ECU) of the fare collection equipment shall be a solid-state device with suitable computing capability and memory for the task. The device shall be either an embedded microprocessor or an industrial grade PC, and shall be capable of tolerating the temperatures and other environmental conditions that the interior of the equipment will experience.

The ECU shall control all activities of the equipment. The ECU shall be equipped with a Central Processing Unit, Random Access Memory, Input and Output (I/O), Non-Volatile Memory, Real-Time Clock, removable Solid State Memory Module, and software capable of performing all control and data processing functions required for the appropriate type of fare collection equipment applications.

The ECU shall record in its non-volatile memory and simultaneously in the removable solid-state memory module, information about the equipment status, configuration, sales/accounting records, and other events. The unit shall record each and every transaction. As a minimum the following data shall be recorded:

- Date
- Time
- Event code
- Employee code
- Totals for each fare type selected
- Total transaction value
- Overpayments
- All Maintenance and Revenue access and the actions taken.
- Count by bill and coin type received for all vaults and hoppers.

13.4.9.23 Communications
The ECU shall communicate via a station Local Area Network with the CCS. Upon demand, the ECU shall transmit to the CCS requested information (such as daily sales totals) or receive and store downloaded information (such as new fare structures). As conditions warrant, the ECU shall initiate communications with the CCS (such as an alarm condition or maintenance alert).

Credit and debit card transactions, which require authorization from a financial clearinghouse, shall also cause the ECU to initiate communications, either directly to the financial clearinghouse or to the CCS (which shall forward the authorization request to the clearinghouse).

13.4.9.24 Timing and Synchronization
The Ticket Vending Equipment shall be synchronized with a system master clock source, time server, or system timing appliance to maintain correct time-stamping and other synchronization functions with system equipment and components. Connection to the master network clock source shall be made via the CTS and shall be capable of utilizing the standardized Simple Network Timing Protocol (SNTP) compatible with the master clock.

13.4.9.25 Alarm System
The Ticket Vending Equipment shall have an integrated alarm system to monitor the security of each unit and its contents.

The status of the outer door shall be monitored at all times by the alarm system. Impact and vibration sensors strategically positioned in the unit cabinet shall detect attempts at intrusion and/or vandalism and shall cause the alarm to activate the siren and remote signaling. Physical security alarms such as those caused by intrusion, impact, or vibration events, as well as loss or degradation of Fare Collection Equipment function, such as a unit trouble or business functions alarms, shall be summarized and forwarded for reporting to the OCC over the SCADA system. Labeling of alarms shall be consistent with Valley Metro’s existing system. During intrusions and other alarm conditions, a local siren shall sound for a programmable period. The alarm shall cause it to transmit the condition to the CCS in addition to the independent reporting by the alarm system.

13.4.9.26 Power System
The Fare Collection Equipment unit shall contain all necessary power supplies for the internal modules. An Uninterruptible Power Supply (UPS) shall also be provided to maintain unit functionality in the event of power failures for a minimum of three minutes in order to conclude any transactions in progress when power fails. No transactions shall commence while commercial power is unavailable.
13.4.9.27 Maintenance Interface
A maintenance keyboard shall be provided inside the fare collection equipment cabinet. This keyboard, together with either a dedicated maintenance display or the passenger display (if usable with the outer door open), shall be used to diagnose the equipment, run tests, enter configuration data, print maintenance and audit receipts, and perform other maintenance tasks. Menus and other simple commands shall be extensively employed.

13.4.9.28 Revenue Servicing
Revenue servicing, which includes exchanging bill and coin vaults, exchanging coin cassettes, replenishing fare media and receipt stock, replenishing recirculating coin supplies, and so on, shall be easily accomplished and shall employ the maintenance interface only where necessary. Under normal conditions, revenue servicing shall require minimal interaction with the TVM ECU and shall not require an extensive understanding of the TVM operations.

13.4.10 Central Computer System (CCS)
The Central Computer System (CCS) shall be comprised of hardware and software components necessary to connect each Fare Collection Equipment unit to a centralized control and management system. The CCS shall provide:

- Real-time status and event monitoring
- Transaction record integrity when moving data from the Fare Collection Equipment to CCS servers
- Daily TVM polling to ensure transmittal of data as well as operational status from the units to CCS
- Data repository for all event and transactional data
- Control and configuration management of various TVM operating parameters from a central location to allow new system files to be sent to the all units
- A vehicle to generate required system reports.

Ticket Vending Equipment shall communicate via the CTS (See Chapter 12, Communications) to the CCS and several LAN connected client workstations in designated secure workstation areas. The Fare Collection Equipment shall automatically report status, events, alarms, and other information to the CCS servers using a variety of administrator defined accounts and access controlled user levels (for example, finance, maintenance, operations departments) when necessary. All Fare Collection Equipment shall also be able to receive information from the CCS servers to update fare structures, fare media print layouts, customer display information, operating parameters, and to be remotely commanded to perform certain diagnostic exercises. If available, the equipment shall also report simple status conditions to the CCS, including security, maintenance, and revenue alarm.
CCS hardware and software shall be designed and sized to accommodate:

- Minimum 500 Fare Collection Equipment units
- Up to 10 units at any single passenger station
- Minimum 100 passenger stations

The Fare Collection Equipment units shall be networked together locally for information aggregation and transfer between the CCS and each active unit installed. The CCS shall receive all communications from Fare Collection Equipment units via the CTS and any intermediate data conversion or network interface equipment. At a minimum, the following TVM originated information shall be transmitted to the CCS:

- Intrusion Alarm Data
 - Unit identification number
 - Event code triggered
 - Date and time
- Transaction Data
 - Unit identification number
 - Date and time
 - Overpayment amount
 - Escrow amount
 - Card number
 - Fare media information
 = Type
 = Value
 = Quantities
- Event Data
 - Unit identification number
 - Date and time
 - Event code
 - Access information
- Revenue Container Insertion and Removal
 - Unit identification number
 - Date and time
 - Revenue container identification
 - Employee ID
The CCS data network (LAN/WAN) shall implement active security measures, through hardware, software, or a combination of both to protect against internal and external unauthorized entry, information theft, misuse, virus and worm threats, DDoS attacks, and other potential security breaches consistent with the most recent Valley Metro information and network security policies. Specifically, any remote access connections to the CCS shall be adequately protected via the implementation of these security measures. The Fare Collection Equipment and CCS firmware shall be designed to meet the latest revision of applicable Payment Card Industry (PCI) Data Security Standards (PCI DSS) and Payment Card Industry (PCI) Payment Application Data Security Standards (PA DSS). The contractor shall ensure PCI compliance of system throughout the warranty period.

All critical for revenue operations components of the CCS shall be designed with redundancy such that any single component or system power failure does not prevent standard revenue operations and reporting.

13.5 Systems Integration

The AFCS design shall be coordinated with the Operations Plan, the LRT system civil work, and communications system. The Designer shall implement a systems integration design program in accordance with the requirements of Chapter 21, System Integration.
14.0 LANDSCAPE

The purpose of this chapter is to establish the standards and design policies for a functional and aesthetic landscape on Valley Metro Projects. Basic functional criteria are to provide shade, comfort, and a sense of scale to the LRT facilities, whether stations, trackways, transit centers, or park and ride lots. Design criteria are established for such items as the appropriate use of plantings, train operator concerns, site distance requirements, pedestrian safety and comfort, and community context. This criteria is to be used in conjunction with the Urban Design Guidelines, jurisdiction requirements, and the Climate and Comfort Report.

14.1 Basic Goals

The landscape should respond to and achieve the following:

- Incorporate visual mitigation recommendations for the corridor and each visual assessment unit as described in the Environmental Impact Statement (EIS).
- Place trees and other plantings to maximize shading and screening opportunities and to provide a more comfortable climate for the rail passenger.
- Select plantings that shade, screen, and frame views where appropriate, in order to soften the visual impact of the corridor.
- Landscape plantings must meet local codes and state water use regulations.
- Coordinate with City representatives early in design phase to determine specific requirements.
- Ensure all potential government and non-government stakeholders are identified early and coordinated with throughout the project, such as parks and recreation, street transportation, community alliances or partnerships, etc.
- Use low maintenance, durable and drought tolerant plant species requiring minimum watering, pruning, feeding, and pest control with moderate growth habit.
- Landscaping design shall be in accordance with Crime Prevention through Environmental Design (CPTED) guidelines.
- A goal to replace existing plant material shall be applied where reasonable and where it is consistent with the overall design intent.
- Consider a design method to balance out the side of the ROW that is not being reconstructed and review with the City and Valley Metro project manager.
- Determine responsibility for maintenance early in the design phase.
• Coordinate with existing adjacent line section designs to ensure continuity and smooth transitions between sections.

• Landscaping design goals are further defined for the station and trackway, and the park-and-ride lots below.

14.2 Station and Trackway Goals

The station and trackway environment is typically located in or adjacent to a major street. This environment includes vehicles, pedestrians, and substantial amounts of hard surfaces such as asphalt and concrete. In the summer a center platform or side platform station is a very inhospitable environment for people and plants alike.

14.2.1 Design Intent

• The trackway landscape offers an opportunity to create a strong linear element through the various landscape settings of the Corridor.

• The landscape should provide an attractive and unifying corridor.

• Design team shall establish the parkway width based on available ROW, surrounding conditions, intensity of use, and jurisdiction requirements. Coordination with appropriate jurisdiction early in design stage is critical.

• The landscape at or adjacent to the station should reinforce pedestrian circulation, help establish the visual identity of the station, protect and frame views, and enhance pedestrian safety and security.

• Enhanced landscaping at Stations shall be applied 350 feet from the centerline of the station in each direction and shall include the following:
  Increased sidewalk widths (minimum 8’ wide) to accommodate heavy pedestrian use.
  More trees for shade and identification.
  Trees spaced no farther apart than 20 feet on center.
  These requirements shall apply to each station even if existing curbs are not being disturbed.
  Start enhanced landscaping in logical locations, such as driveways or intersections.

• Design median landscaping to coordinate with the adjacent ROW and station landscaping. Avoid using equally spaced, aligned single-trunk trees or palm trees that would create a ‘picket fence’ appearance, or landscaping that will interfere with the train cars or overhead catenary lines.

• Determine early in the design phase if the City wants to upgrade any landscaping or hardscape that will be constructed by the contractor (CNPA).

14.2.2 Pedestrian Shade

Shade shall be provided for the comfort of passengers that addresses the nature of our climate. Shade trees shall be used on the platforms due to their function as cooling mechanisms.
Landscaping/shading should be oriented to shade pedestrians and vehicles during the hottest part of the day. Minimum 36-inch box trees shall be provided for the platforms, 24-inch box trees elsewhere. Minimum height, width and caliper for the trees shall be as specified in the American Nursery Association Recommended Average Tree Specifications for the size and species of tree specified. The required box size and tree caliper shall be specified on the plans.

14.2.3 Plant Longevity

- Choice of tree and vine species should be balanced with maintenance requirements.
- Provide a minimum of 48 square feet of exposed, properly aerated soil per tree, free of underground utilities.
- Provide an automatic irrigation system to all plant material. Coordinate irrigation products and the location for irrigation controllers with each City during the design phase. Provide adequate drainage in the plant area.
- Determine if the existing irrigation system is suitable to add new irrigation facilities or if it must be totally replaced. Many areas have a mix of private and municipal systems within the ROW. Irrigation facilities maintained by Metro shall be new.
- Employ techniques to prevent the accumulation of grass, leaves, and other errant plant material on the track.
- Efforts should be made through pruning and care of vines in the first year of planting to ensure vines are trained to grow predominantly below the canopy level.

14.2.4 Pedestrian Safety or Security

- The landscape should not detract from pedestrian safety and security (CPTED).
- Prune trees as they grow to eventually achieve a 7-foot clearance above walkways and parking stalls, and to maintain sight visibility distances required by the City. Tree canopies shall not be lower than seven feet from the finish floor or sidewalk elevation, except in non-pedestrian areas.
- Vegetation should help to screen vehicles from adjacent uses while allowing for surveillance.
- If the sidewalk width must be less than the City standard width, place trees in tree grates to extend the effective width of the walking area. Coordinate with the City to determine if other opportunities exist to widen the sidewalk.
- Cast iron tree grates when utilized shall have 48 square foot minimum exposed soil area to cover. Tree grates shall be designed to support the weight of one wheel of a service vehicle and be compliant with ADA Standards for Accessible Design.

14.2.5 Structural Soil

- Structural soil shall be used as considered appropriate based on the experience of the design team and City staff.
Review details and specifications for using structural soil with the City staff prior to incorporating in the project to determine where or if it should be used.

14.3 Park-and-Ride Lots

Park and ride lots are typically large expanses of asphalt of varying size depending on their location and place in the rail system. The landscape of these parking lots provides an opportunity to reinforce pedestrian connections to rail facilities while creating a more moderate climate.

14.3.1 Design Intent

- Landscaping should provide year-round aesthetic interest.
- The facility landscape should provide orientation to the transit passenger.
- Plantings should reinforce pedestrian circulation and access to transit facilities.
- Coordinate with Cities on locations of Park and Ride lots to determine if joint development is a potential. Document and provide a ROM for all CNPA facilities required by the City.
- Main requirement is to provide shade for pedestrians.
- Comply with City requirements for all lighting, retention, and landscaping. Minimum landscape requirements are governed by the Development Codes of the City in which the park and ride site is developed.
- All work outside ROW shall be processed through the Cities development review process.
- Retain all on-site water on site. Review each Cities standards for specific requirements.
- Maintain proper site visibility requirements per each Cities requirement.
- Provide landscaping around security structures. Insure trees will not block view from security cameras.

14.3.2 Parking Lots

- The asphalt should be shaded to reduce the heat island effect.
- Trees should be placed in islands with sufficient frequency so as to provide shade for the parking spaces to meet local landscape standards. A minimum of 60 square feet of contiguous open soil area shall be provided for each tree to ensure their long-term health.
- Vegetation should help to screen vehicles from adjacent uses while allowing for surveillance.

14.3.3 Pedestrian Shade

- Shade should be provided over pedestrian walkways and within the parking areas to shade patrons of the system.
• Direct, shaded pedestrian connections should be provided to transit destinations.
• Use of multi-trunk trees should be encouraged in parking areas to reduce the tendency for blowdown; however, placement of multi-trunk trees needs to consider potential branch interference with pedestrians or vehicles and should not be located in islands.
• The station access walkway area should be shaded, either by architectural or vegetative shade.

14.3.4 Wayfinding
• Vegetation should be used to help direct pedestrian traffic to the platform.
• Vertical elements such as trees and palms should be used to orient patrons to destinations within the facility.
• Use of color and accent plantings should be used to help way finding.

14.4 Hardscape
• Sidewalk widths and locations shall be addressed in the early planning stage to determine the effects on ROW, sidewalk locations, plant types that can be used, etc.
• Coordinate with each City to determine whether to match the existing hardscape or replace with a different material. The hardscape design shall be based on several factors, including the historical nature and condition of the existing hardscape, and the goal to create a unifying and safe streetscape.
• Preferred sidewalk width is 8 feet unless otherwise required by the local jurisdiction. Coordinate with each jurisdiction to determine their specific design standards, sidewalk and parkway widths, and tree grate requirements.
• Enhanced Landscaping at Stations: Sidewalk widths and landscaping requirements shall comply with the current applicable minimum standards for the City in which they are constructed.
• Replace artistic sidewalks in kind.
• Coordinate with adjacent private developers to provide consistent hardscaping and to avoid replacing new or proposed hardscaping.
• All hardscaping shall be in conformance with the ADA Standards for Accessible Design.

14.5 Grading and Slopes
• Limit side slopes adjacent to sidewalks to the maximum allowed by City requirements.
• Slopes with aggregate mulch shall be no greater than 3:1.
• Turf areas shall not exceed 5:1.
14.6 Plant Material

A list of plant materials to be used for Station Platforms is presented in Chapter 6, Station Design. Plant selection should consider the following:

- Design intent
- Mature height and spread
- Growth rate
- Seasonal form and color
- Hardiness
- Sun/shade preference
- Bloom cycle and seed/fruit production
- Soil and drainage conditions
- Tolerance to pollutants, wind and abuse
- Availability and contract growing options
- Maintenance characteristics
- Initial cost
- Minimal plant droppings

For plants within Public Utility Easements (PUE), selections shall be made from the list presented in Appendix C, List of Plants Acceptable In Utility Easements.

Plantings shall include indigenous and native species, suited to the Sonoran Desert and specific site conditions.

Mature, healthy existing plant material shall be preserved or salvaged where possible. All existing trees on a site shall be indicated on the contract documents. Appropriate protection in place during construction shall be specified.

- Coordinate with City to determine requirements and extent of soil testing needed.
- Coordinate with private developers so that the landscaping is compatible to the extent possible.
- Minimum size for trees shall be 24-inch box (except on platforms), equivalent caliper, height, and width for the species as noted in the ANA Tree Specifications, current edition.
- The longitudinal spacing of trees shall be adjusted to accommodate existing subsurface conditions such as utilities and vaults, and special conditions such as existing or proposed poles, walkway canopies, awnings and shelters.
- Avoid interference with OCS poles, trains and overhead centenary lines.
• Where applicable, new street trees at stations shall relate to existing landscaping.
• Medium to large shrubs shall be avoided. Groundcovers and small shrubs less than 3 feet in height are preferred.
• Use plant materials that meet the sight visibility requirements required by the City.
• Vegetation shall not obscure visibility of either pedestrians or vehicles. Trees and groundcovers are preferred in heavily trafficked pedestrian areas.
• Vines shall be used selectively to landscape vertical surfaces such as screen walls. Approved vines shall be as listed in Chapter 6, Station Design.
• No thorny plants are to be planted in ROW or near pedestrians.
• Utilize hybrid or cultivar trees if possible to help achieve consistent tree characteristics.
• Existing plant material shall be inventoried during the design phase to compare to the new design. The new design should try to balance plant material that is removed.

14.7 Codes and Standards

All local codes shall be followed or exceeded to ensure acceptance of landscape plans during jurisdictional design review. In addition, the following standards and guidelines shall be referenced:

• American Standard for Nursery Stock ANSI Z60.1;
• Arizona Nursery Association (ANA) Recommended Average Tree Size Specifications;
• Standard Plant Names, American Joint Committee on Horticultural Nomenclature
• Arizona Department of Water Resources (ADWR) Drought Tolerant / Low Water Plant List
• Applicable City Zoning Ordinance and building code requirements, including MAG Standard Specifications and Supplements.
• Americans with Disabilities Act (ADA) Standards for Accessible Design
• Utility company requirements
15.0 ELECTRICAL FACILITIES

15.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the facilities electrical engineering on the Valley Metro LRT Project.

To the greatest extent possible, and consistent with achieving cost effectiveness and practicality of construction, the design shall:

- Provide for safe, reliable, economic and continuous operation of the electrical system
- Promote uniformity and standardization in both design and equipment
- Facilitate the installation and maintenance of the electrical system
- Provide reasonably cost-effective spare capacity for future use as defined herein.
- Lighting to meet Crime Prevention through Environmental Design (CPTED) guidelines

15.1.1 Scope

These criteria apply to the design of all electrical power systems, lighting systems and associated controls for fixed facilities such as:

- At-grade passenger stations
- At-grade passenger station at existing facilities
- Operations Center
- The Main Yard and Shop facilities
- Other ancillary facilities
- At-grade segments
- Pedestrian crosswalks
- Parking or storage areas

Included are requirements for spares and for connections to equipment.

These criteria shall be coordinated with the Traction Power, Signaling, and Communications Chapters. Any criteria not covered in those chapters should be referred to Chapter 15, Facilities Electrical.

This criteria does not apply to vendor-provided prefabricated structures, where these structures are furnished as part of a system specified under other sections of this document, such as packaged traction power substation buildings and communications/signaling buildings or housings.
15.1.2 Codes, Regulations and Standards

Electrical systems shall conform to the requirements of the codes (including ordinances), regulations (including general rules and safety orders), and standards listed herein.

Where the requirements stipulated in this document or any referenced source are in conflict, the stricter requirement shall govern.

Unless specifically noted otherwise herein, the latest edition of the code, regulation, and standard that is applicable at the time the design is initiated shall be used. If a new edition or amendment to a code, regulation or standard is issued before the design is completed, the design shall conform to the new requirement(s) to the extent practical or required by the standard governmental authority enforcing the code, regulation or standard changed.

15.1.3 Local Codes and Regulations

Local codes and regulations and their amendments shall apply to all the work within the jurisdiction. The designer shall ascertain the jurisdiction(s) applicable to the work, and coordinate with them during the implementation of the design.

15.1.4 National Codes and Standards

The codes, standards, and regulations (latest edition) of the following national organizations shall be used, as applicable, in conjunction with the requirements of the local codes, standards, and regulations. The work shall be in compliance with, but not limited to, the associated publications included below:

- American Institute of Steel Construction (AISC)
- American Iron and Steel Institute (AISI)
- American National Standards Institute (ANSI)
 - C2 National Electrical Safety Code (NESC)
 - C84.1 Voltage Ratings for Electric Power Systems and Equipment (60 Hz)
- American Society of Mechanical Engineers (ASME)
- American Society for Testing and Materials (ASTM)
- American Welding Society (AWS)
- Certified Ballast Manufacturers (CBM)
- Factory Mutual (FM)
- Insulated Cable Engineers Association (ICEA)
- International Electrotechnical Commission (IEC)
- Institute of Electrical and Electronics Engineers (IEEE)
- Illuminating Engineering Society (IES)
- National Association of Corrosion Engineers (NACE)
Design Criteria Manual
Chapter 15.0 – Electrical Facilities

- National Electrical Contractors Association
- Standard of Installation
- National Electrical Manufacturers Association (NEMA)
- National Fire Protection Association (NFPA)
 - 70 National Electrical Code (NEC)
 - 72A Installation, Maintenance, and Uses of Local Protective Signaling Systems for Guard’s Tour, Fire Alarm, and Supervisory Service
 - 72C Installation, Maintenance, and Uses of Remote Station Protective Signaling Systems
 - 72E Automatic Fire Detectors
 - 72F Installation, Maintenance, and Use of Emergency Voice/Alarm Communication Systems
 - 78 Lightning Protection Code
 - 101 Codes for Safety from Fire in Buildings and Structures
 - 110 Emergency and Standby Power Systems
 - Standard on Fire Protection in Planned Building Groups
- Occupational Safety and Health Administration Act (OSHA)
- Uniform Building Code (UBC)
- Underwriters Laboratories (UL)

15.1.5 Interpretation
Interpretation of requirements by local codes, standards, and regulations shall be those issued by the authority having jurisdiction.

Interpretation of national codes, standards, and regulations shall be those made by the issuing organizations. In particular, the following handbooks shall be used in conjunction with their codes:

- The National Electrical Code Handbook (issued by NFPA)

15.1.6 Design Guidelines
The design shall conform, whenever practical and applicable, with the recommendations given in the following publications:

- Institute of Electrical and Electronics Engineers (IEEE)
 - 141 Recommended Practice for Electric Power Distribution for Industrial Plants
15.1.7 Definitions

- Definitions for lighting terms and abbreviations used herein are contained in the IES Lighting Handbook, Reference Volume, and in the ANSI/IES series, “RP” publications listed under Subsection 23.1.4.5 B.

- Definitions for power distribution terms and abbreviations used herein are contained in the various standards listed in Subsection 23.1.4.5 A, or in the IEEE Standard Dictionary of Electrical and Electronics Terms (IEEE 100).

15.1.8 Environmental Considerations

Electrical systems and components shall be compatible with the environment (See Section 1.4) in which they are intended to operate. Suitable components and enclosures shall be selected to allow the equipment or systems to operate without significant loss of design life.

15.1.9 Selection of Materials and Equipment

Material shall be UL listed, IEEE, NEMA or industrial heavy-duty meter whenever the listing is available.

Material and equipment specified for use shall have approval for use by Valley Metro when no UL listing is available.

Whenever practical, items specified shall be available from three or more manufacturers. Catalogued (off the shelf) items are preferable over customized items.

Fire pump controllers shall be FM approved.
15.2 Distribution System

15.2.1 General

The electrical power distribution system shall be designed to be flexible, capable of accommodating future additional loads, and easily and economically maintained. Initial costs shall be considered along with life cycle costs.

The electrical distribution system shall be fully coordinated. Fault current calculations shall be based on expected short circuit levels, taking into account feeder impedance.

Where practical and economical:

- Locate the distribution and transformation equipment near the center of load.
- Supply 120/208-Vac panelboards by local step-down transformers.

Take full advantage of intermittent operation and any applicable industry recognized load diversity factors in rating feeders and equipment.

Electrical equipment shall be capable of operating successfully at full-rated load, without failure, at an ambient air temperature of 60 degrees C, and specifically rated for the altitude of the project. Electrical equipment not rated for operation at that temperature shall be provided with air conditioning to meet the manufacturers’ operating temperature.

The design documents shall state that the fabricator of major components, such as distribution panelboards, switchgear, and motor control centers, shall also be the manufacturer of the major devices therein.

Service Entrance Sections, Switchgear, Switchboards, Panelboards, Control and Distribution Panels, and other factory assembled electrical enclosures shall bear a UL label. Custom built electrical enclosures and control panels shall bear a UL508 label.

Disconnects in all outdoor environments shall be lockable and be equipped with safety switches to prevent inadvertent shutting down of power.

The Designer shall be responsible for contacting and coordinating the electrical utility work design with the electrical utility company. The Designer shall be responsible for specifying the equipment and material required to bring electrical power service to the service location in conformance with the electrical utility requirements. The Designer shall identify requirements for the electrical utility company’s primary (from utility power line to the utility transformer) and secondary (from utility transformer to the service) electrical lines in accordance with the electrical utility company’s specifications and requirements:

- Conduits (verify quantity, specifications, and sizes)
- Trenching, backfill, and compacting (verify trench size(s), backfill material, and compaction percentage requirements)
- Concrete pad(s) (for pad mounted transformer(s))
• Cable protection along the vertical drop at the utility company's pole (if pole mounted transformer(s))
• Other items required by the power utility company

The Designer shall also submit copies of Service Entrance Section (SES) design Drawings to the service provider, per utility submittal requirements. The Designer shall obtain written approval from the power utility company that the proposed SES equipment is acceptable.

The design shall specify that data and curves for a short circuit analysis and coordination study shall be performed by the Contractor and submitted for review and approval. The study shall include all protective devices from the utility service to and including the secondary devices of medium voltage transformers and primary feeders to motors, motor control centers, loads 50 kVA and larger, and devices rated at 100 ampere and larger.

Single line diagrams shall show circuit voltages, circuit protection rating, and other pertinent data. Grounding conductors are to be indicated and grounding requirements specified.

15.2.2 Classification of Electrical Loads

Essential loads are those required to be in operation during a disruption in the normal power supply to the facility. These include:

- Fire alarm and public address systems
- Emergency communications systems
- HVAC and other mechanical equipment (and their controls) necessary for control of smoke and fire.
- Equipment required for security surveillance (CCTV cameras) or where otherwise identified as necessary by security considerations.

Minimal lighting levels as required under part A and nonessential loads are all loads other than those defined above under part A, and include:

- Lights or signs not required for emergency
- Equipment or subsystems not required for evacuation or security surveillance.

15.2.3 Reliability and Load Transfer Requirements

The Vehicle Repair Shop and Operations Building at the Main Yards and Shops

- Facility shall be supplied with two service feeders, each providing one half of the required capacity. Provision shall be made to enable transfer of selected loads between these feeders, to allow limited shop operations during a feeder failure.

All other facilities, including at-grade passenger stations, shall be supplied with one service feeder.
Where the service feeder emanates from a traction power substation, it shall be dedicated to that facility.

Where the facility is supplied directly by an electrical utility, the service shall be provided from the nearest existing reliable source.

Essential loads shall be transferred from the service feeder to a local emergency power supply in the event of power loss in the normal service feeder. Transfer shall also be affected for low voltage level conditions where the operation of essential equipment supplied from the feeder will be materially affected.

15.2.4 Loading of Distribution Equipment and Feeders

Loading of distribution equipment and feeders shall be based on sustaining continuously the demand loads, including provisions for future equipment and spare capacity. Initial design loading is to be 80% of the rated ampere capacity of the distribution equipment and feeders.

Demand loads and demand factors for equipment or devices, including provisions for future units, shall be based on the values listed in Table 15-1.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Load (Watts)</th>
<th>Demand factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ticket Vending Machine (TVM)</td>
<td>1800</td>
<td>50</td>
</tr>
<tr>
<td>2. Misc. Fare Collection Equipment</td>
<td>1500</td>
<td>50</td>
</tr>
<tr>
<td>3. Security Surveillance Camera (CCTV) Stationary</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4. Convenience receptacles at passenger stations or future structures (where intended for use only by maintenance personnel)</td>
<td>180</td>
<td>100% of one receptacle per circuit</td>
</tr>
<tr>
<td>5. (1) Power receptacle at each passenger stations</td>
<td>30A at 240V.</td>
<td>100% of one receptacle per circuit</td>
</tr>
<tr>
<td>6. Miscellaneous equipment and devices at passenger stations</td>
<td>rated</td>
<td>100</td>
</tr>
<tr>
<td>7. Normal lighting</td>
<td>rated</td>
<td>100</td>
</tr>
<tr>
<td>8. Exit or emergency lights</td>
<td>rated</td>
<td>100</td>
</tr>
<tr>
<td>9. Signage</td>
<td>rated</td>
<td>100</td>
</tr>
<tr>
<td>10. HVAC equipment</td>
<td>rated</td>
<td>100</td>
</tr>
<tr>
<td>11. Traction Power Substation</td>
<td>Refer to Traction Power Chapter 10</td>
<td></td>
</tr>
<tr>
<td>12. Signaling/Communication</td>
<td>Refer to Signaling and Communications Chapters 11 and 12</td>
<td></td>
</tr>
</tbody>
</table>

Other demand factors shall be based on code requirements.

A demand of less than 100% can be applied to HVAC equipment where controls preclude continuous operation.
Demand provisions for spares of distribution equipment shall be based on the following percentages of the calculated demand at the equipment, namely:

- Panelboards - 20%
- Switchboards and Motor Control Centers – 20%

15.2.5 Voltage Levels and Control

Nominal utilization voltage levels and limits for the distribution of power shall be as follows:

- 120, 240 or 277-Vac for single phase, 60 Hz operation
- 208, 480-Vac for three phase, 60 Hz operation

Voltage drop from service entrance to farthest outlet, device or equipment shall be no greater than 5%, except for circuits supplying only motor loads or equipment rated for operation with a voltage range exceeding ± 10%.

Motors over 3 HP or devices or equipment over 4800 watts shall be supplied at 3-phase where practical. Preferred supply level is 480-Vac.

Groups of equipment, fixtures or devices shall be supplied from balanced: 3-phase, 3 or 4-wire, 60 Hz circuits where practical and economical.

Power supply to communication/signaling rooms, housings, or buildings, where supplied from passenger stations or other facilities, shall be at 480-Vac, 3-phase, 3-wire, 60Hz.

Power supply to fare collection equipment shall be 120-Vac. Power supply to surveillance cameras (CCTV) shall be at 120-Vac, except where powered from the Communications system.

Distribution transformers rated 1 KVA and below shall be provided with NEMA standard full capacity, no-load taps.

Control circuits shall be supplied at a minimum of 125-Vdc, or 120-Vac. Circuits in excess of 1000 linear feet shall be effectively protected from capacitive pick-up.

15.2.6 Spare Capacity

The following specific provisions shall apply:

- Lighting panelboards - 20% additional single pole circuit capacity. Provide a 20A, 1-pole circuit breaker in each space designated as a spare.
- Distribution panelboards - as per lighting panelboards, except provide spaces only.
- Switchboards - 20% of connected load. Provide a mixture of circuit breakers and spaces.
- Motor Control Centers - 20% of connected load. Provide a mixture of size 1 starters and fully equipped spaces. Provide bus extension and allocate space for one or more additional future sections, where possible.
• Underground or in-slab conduits - 25% additional unused conduits (minimum of one per run), sized so that any one circuit in the run can be relocated to one spare conduit.

• Conduit sleeves through footings or floors (where accessible) - provide as for underground conduits.

• Provide a minimum of four additional, unused 3/4-inch conduits between panelboards and accessible ceiling spaces, where the panelboards are flush-mounted in furred walls.

• Wireways and pull boxes - Provide 20% additional capacity or allocate space for additional wireways.

15.2.7 Spaces for Electrical Equipment

Electrical rooms and closets shall have sufficient space to house all equipment, including future units, and to properly ventilate the equipment. Adequate space shall be provided for working clearances and service aisles (where required) and for removal or replacement of the equipment. Working clearance shall meet NEC and NFPA requirements.

Where possible, two access doorways shall be provided to electrical rooms. Doorways should be located as diametrically opposite to each other as practical. One such access doorway shall be sized to allow removal or replacement of the largest piece of equipment in the room, and shall be located such that the equipment can be moved through the facility to an outdoor area suitable for transporting the unit off-site.

Aisles in electrical rooms shall have sufficient clear width to remove equipment, where required. Minimum clear width shall be 3'-0".

Working space behind back or side enclosure panels shall be as required with a minimum of 2'-0".

Electrical rooms and closets shall be provided with ionization-type space smoke detectors.

One convenience duplex receptacle shall be provided in each electrical closet, as well as in each wall of every electrical room.

15.2.8 Wiring Methods and Materials

Wiring shall be run in conduits, ducts, or enclosed wireways. Troughs or cable trays are acceptable for use in maintenance or repair facilities only. Each feeder and branch circuit shall be installed in its own individual conduit unless combining feeder and branch circuits is permitted as defined in the following:

• As specifically indicated on the Plans.

• For lighting, multiple branch circuits may be installed in a conduit as allowed by the NEC and with the wire ampacity de-rated in accordance with the requirements of the NEC. Conduit fill shall not exceed the limits established by the NEC.

• When field conditions dictate and written permission is obtained from the Engineer.

Feeder and branch circuits shall be isolated from each other and from all instrumentation and control circuits.
Minimum conduit size shall be 3/4-inch, except 1-inch for embedded or underground use and 1/2-inch for fixture stems.

Metallic conduit shall be galvanized rigid steel or electrical metallic tubing, hot dipped and electroplated for electrical metallic tubing.

Exposed or embedded conduits used where subject to physical abuse, or at open spaces, or in slabs subject to high-impact loads shall be rigid galvanized steel. No direct burial or metallic tubing shall be allowed. Exposed conduit inside the room may be the electrical metallic tubing or FRE conduit.

PVC schedule 40 or similar shall be allowed for ductbanks. Underground conduits may be nonmetallic. Where not protected by slabs, underground conduits shall be encased in concrete using preformed spacers and joints approved for encasement.

Conduits crossing under tracks shall be installed prior to sub-grade approval and encased up to 10 feet from the field side of each track.

Conduit termination to motors or other equipment subject to vibration shall be by flexible liquid-tight metallic conduits, and installed to provide a drip loop.

Expansion fittings shall be used where raceways pass through building expansion joints or in outdoor runs longer than 100 feet.

Fixtures shall not be supported from conduits.

Conduit fittings shall be manufactured of materials suitable for the adjoining conduit.

Conduits and nipples shall be terminated in insulating bushings (grounding-type for metallic conduit runs), except for the use of bell-ends in manholes.

Raceways shall be UL listed for the conductor's temperature rating.

All wiring shall be indicated on the Plans. Wires shall be soft drawn copper with not less than 97 percent conductivity. The wire and cable shall have size, grade of insulation, voltage, and manufacturer's name permanently marked on the outer covering at not more than 2-foot intervals. All wires shall conform to the latest Standards of the ASTM, and ICEA. Insulation thickness shall be not less than that specified by the National Electrical Code. Conductor material shall be copper. Buses shall be copper.

Terminal lugs and bus connections shall be tin-plated.

Wire sizes shall be American Wire Gauge (AWG) sizes with Class B stranded construction. Number 2 AWG and smaller shall be factory color coded with a separate color for each phase and neutral, which shall be used consistently throughout the system. Larger cables shall be coded by the use of colored tape. Conductors sized No. 1 and larger shall be Type 2, rated for 90 degrees C. All circuit conductors, #6 or smaller shall be “THWN” stranded copper. All other conductors shall be “XHHW” stranded copper. Minimum conductor size shall be No. 12 AWG, except No. 14 AWG for fixture lead in wires and control wiring, and No. 16 AWG for fixture wiring.
Individual or multiple conductor cables for power, control, and alarm circuits of 480 volts or less shall be insulated for not less than 600 volts and shall have insulation type indicated on the Plans. "THWN" shall conform to ICEA S-61-402/NEMA WC 5 and UL 83 and “XHHW” shall conform to ICEA S-66-524/NEMA WC 7 and UL 44. No wire external to panels and motor control centers shall be less than No. 12 AWG. Panel control wiring shall not be less than No. 14 AWG. Where cable is indicated to be run in cable tray, said cable shall be UL listed for cable tray use. Power wiring shall be single or multiple conductors. Multiconductor control wiring is allowed. Cables installed in cable tray shall be TC-type.

Insulation shall be thermoplastic or thermosetting (thermosetting for main feeders) rated for a minimum of 75 degrees centigrade (dry location rating). Insulation shall be suitable for dry and wet locations. Insulations suitable only for dry locations are allowable for well-drained exposed runs in dry locations, or inside equipment. Neoprene insulations are not allowed.

Conductors entering 100% rated equipment shall have 90-degree rated insulation (dry locations).

High-voltage cables shall have cross-linked polyethylene (XLP) or Ethylene Propylene Rubber (EPR) insulation with a chlorosulfonated polyethylene or neoprene protective outer jacket.

Cable splices shall be avoided where practical; otherwise, they shall be made in accessible enclosures suitable for the purpose. Splices in wires No. 10 AWG and smaller shall be made with an insulated, solderless, pressure type connector, Type I, Class 1, Grade B, Style G, or Type II, Class 1 of FS W-S-610 and conforming to the applicable requirements of UL 486A. Splices in wires No. 8 AWG and larger shall be made with noninsulated, solderless, pressure type connector, Type II, Class 2 of FS W-S-610, conforming to the applicable requirements of UL 486A and UL 486B. They shall then be covered with an insulation and jacket material equivalent to the conductor insulation and jacket. All splices below grade or in wet locations shall be sealed type conforming to ANSI C119.1 or shall be waterproofed by a sealant-filled, thick wall, heat shrinkable, thermosetting tubing or by pouring a thermosetting resin into a mold that surrounds the joined conductors. Conductors, including grounding conductors, of different sizes shall be spliced and then soldered or welded. Splices in wet locations and all splices below grade shall be of the Exothermic type. Make splices only at pull or junction boxes. Crimp or indenter-type connectors are not allowed, except for control circuits landed on terminal strips. For wires smaller than No. 10 AWG: Use insulated conical spring connectors or “wirenuts” For wires sized between No. 10 AWG and #6 AWG: Use insulated conical spring type connectors. For #6 AWG and larger wire: Use solderless lugs and screw type connectors.

Right angle conduit bodies shall not be used for conductors larger than No. 8 AWG.

Back-to-back outlet boxes shall not be used in sound-rated partitions. A minimum separation of 6 inches shall be provided.

Receptacles shall be supplied separately from lighting circuits

Conduit and Wire Tags

- Each wire and conduit run shall be identified uniquely within a facility.
• Identification tags shall be of the permanent type, with a 1/8-inch (minimum) letter height.

• The identification scheme shall be alphanumerical, using a sequential numerical suffix and the following prefixes:
 – A for power wiring
 – AX for controls outside of equipment

All spare conduits shall be cleaned and sealed.

Wiring devices shall be specification grade.

Cable shall be rated 600 volts. Other parts of cable systems such as splices and terminations shall be rated at not less than 600 volts. Splicing shall join conductors mechanically and electrically to provide a complete circuit prior to installation of insulation.

Provide trenching, backfill, and compaction for conduits installed underground. Multiple underground conduits shall maintain a 7 ½" separation measured from the center of each conduit for M.V. cable and a 2" separation measured from outside wall to outside wall for low voltage and signal wires, or as otherwise noted on the drawings.

15.2.9 Electrical Equipment and Devices

Equipment shall conform to the applicable ASTM, NEMA, and ANSI standards

Distribution equipment shall be provided with molded case circuit breakers and full bus extension behind spaces. Main circuit breakers shall be provided only where required by code or where the equipment is fed from taps. Circuit breaker frame, trip, short circuit, and interruption ratings shall be indicated on the Plans, they shall be coordinated with the ratings of the equipment actually furnished, and shall be modified where necessary to suit the equipment. Circuit breakers to be used in motor control centers shall be as indicated on the Plans.

Provide fuses of types, sizes, ratings, and average time-current and peak let-through current characteristics as required by NEC and equipment manufacturer, which comply with manufacturer's standard design, materials, and constructed in accordance with published product information, and with industry standards and configurations.

• Fuses 601 amperes and larger for switchboards shall be UL Class “L”, current limiting, time delay, 600 volt, with interrupting rating of 200,000 amperes RMS symmetrical (Bussmann KRP-C).

• Fuses protecting lighting and appliance branch circuit panels shall be UL Class “RK –1”, current limiting, 600 or 250 volt, with interrupting rating of 200,000 amperes RMS symmetrical (Bussmann KTS-R or KTN-R), and current limiting, time-delay for 100 amperes and less (Bussmann LPS-RK or LPN-RK).

• Fuses protecting motor control centers and transformers shall be UL Class “RK-1”, current limiting, time delay, 600 or 250 volt, where interrupting duty is over 100,00
amperes RMS symmetrical (Bussmann LPS-RK or LPN-RK), and UL Class, “RK-5”, time-delay for up to 100,000 amperes (Bussmann FRS-R or FRN-R).

- Fuses protecting motor branch circuits shall be UL Class “RK-5”, time delay, 600 or 250 volt, 200,00 amperes RMS symmetrical interrupting rating, sized at 125% of motor nameplate full load amperes (Bussmann FRS-R or FRN-R).

Motor control centers shall be NEMA Class I or Class II, type B, drip-shield. NEMA Type 1 gasketed enclosures shall be provided for indoor use.

Disconnect switches shall be heavy-duty safety switches with a quick-make, quick-break operating mechanism, with full cover interlock, and indicator handle. The disconnect switches fuse sizes shall be indicated on the Plans. One set of spare fuses shall be furnished for each fused disconnect switch. Disconnect switches shall be NEMA type HD heavy duty construction, UL 98 listed.

Disconnects in all outdoor environments shall be lockable and be equipped with safety switches to prevent inadvertent shutting down of power.

A permanent identification nameplate shall be provided on the front of each equipment unit.

Except where provided integrally with the mechanical equipment, motors shall be of drip-proof, open construction, NEMA Class B design with a Class F insulation system. Totally enclosed ventilated units shall be used where subjected to the weather or splashing water.

Transformers shall be dry-type, Class H 220 insulation. Taps shall be provided in accordance with the Voltage Levels and Control subsection. Three-phase windings shall not be connected wye-wye.

Transformer sound ratings shall not exceed ANSI C57.12.57 requirements. Quiet-type transformer designs shall be used in office and other areas sensitive to noise. Transformers locations shall be indicated on the Plans, K. Outlet covers shall be metallic. Plastic decorative covers are allowed only in office and public reception areas. Locking, tamper-proof type covers shall be provided in areas accessible to the public.

Devices or equipment enclosures in passenger stations or other areas accessible to the public shall be made tamperproof by use of special fasteners or locks. Where available, these devices or equipment enclosures shall be made vandal-resistant.

Ballasts shall be CBM certified. In office areas, ballasts shall have an “A” sound rating.

Convenience duplex receptacles shall be provided for use by maintenance personnel in all public and non-public areas of passenger stations. In public areas, receptacle shall be equipped with ground fault interrupter.

Controls for HVAC, sump pumps, and other electrically operated equipment in all stations shall be standardized wherever possible for ease of maintenance and repair.

Enclosures shall be fabricated from 14 gauge steel with seams that are continuously welded. Doors shall have full length piano hinges with the door removable by pulling the hinge pin.
Enclosures shall be NEMA 12 for indoors, NEMA 4X for corrosive areas, and NEMA 3R for outdoor installations. NEMA 4X enclosures shall be stainless steel. NEMA 3R enclosures shall be used in wet areas. Enclosures shall be properly grounded, and shall include ground straps connected to hinged doors and accessories.

Weatherproof while in use outlet enclosures shall be used in locations where attachment plugs will be connected permanently, or for an indefinite period of time, in potentially wet or weather exposed environments. They are also to be used where outlets are subject to contamination, corrosion or damage.

Dead-front panelboards, including lighting distribution and control panels, shall be indicated on the Plans. Buses shall be copper. Mounting and type of enclosures shall be indicated on the Plans. Indoor enclosures shall be NEMA 1 and outdoor enclosures shall be NEMA 3R. The minimum interrupting capacity of any device shall be indicated on the Plans. Panelboards shall be service entrance rated where required, and shown on the Plans.

The plans shall indicate the intended location of pullboxes and routing of ductbanks and direct buried conduit. Field conditions may affect actual routing. Pullboxes shall be sized to facilitate the duct bank installation. The pull boxes shall be designed for traffic conditions, and the pullbox and cover shall be designed for heavy traffic bridge loading. The pullboxes shall have dimensions indicated on the Plans. The pull boxes shall be constructed of concrete.

15.2.10 Supply from Traction Power Substations

Passenger stations shall be supplied power from a Single Phase, 3-wire 60Hz feeder originating at a nearby traction power substation, whenever practical and economical. The voltage level shall be coordinated with the traction power substation design.

Reliability and availability of the feeder shall be equivalent to the requirement outlined in the Reliability and Load Transfer Requirements subsection.

The capacity of the feeder shall allow for continuous operation at the station peak demand, with voltage drop not to exceed 3% between the substation transformer's secondary terminals and the feeder's terminals at the passenger station.

The feeder and its protective devices shall be coordinated with the station's main circuit breaker and service panel withstand ratings.

Feeder conductors shall be run physically separate of any traction power conductors, including within manholes, handholds or pull boxes, by means of the use of voltage level barriers. Minimum conductor size shall be #1 AWG.

Feeder runs shall be provided with a minimum of one spare conduit.

15.3 Electrical Service

15.3.1 General

Electrical service to facilities shall be provided from applicable electric utility company circuits in the vicinity, except where the supply is from a traction power substation.
Electrical service requirements of the applicable electric utility company shall be strictly observed and shall be obtained through the Valley Metro Utility Manager.

The main yard and shop building(s) shall be supplied from the Yard and/or Shop traction power substation(s).

Passenger stations shall be supplied with a 200A, Single Phase service as a minimum.

The SES shall be a single panel, frame or assembly of panels on which shall be mounted on a deadfront mounting plate. The overcurrent protection rating shall be indicated on the plans.

The SES shall be a one-piece enclosure with front accessibility unless otherwise required. The SES shall have a metered distribution section complete with meter socket and factory installed test blocks, address tag/label, customer metering, and a pull section, overhead or underground, and indicated on the plans; all of which shall comply with the requirements of the electric utility company specifications.

Each passenger station SES shall be located off the platform and provide for nearby parking of Valley Metro’s portable (trailer mounted) emergency generator. Parking shall be located within approximately 30 feet for the SES. Final placement shall be coordinated with Valley Metro, the local jurisdiction, and the electric utility having jurisdiction. The design shall include a generator anchor box to secure the generator trailer on site.

15.3.2 Supply Voltage Levels and Limits
Nominal levels shall be in accordance with Section 15.2.5:

Voltage tolerance limits shall be those specified by ANSI C 84.1 for the supply level used.

15.4 Emergency Power Supply
Emergency power provisions for facilities shall be provided. The requirements shall be evaluated in conjunction with overall systems designs. Station platform service entrance sections shall be provided with a manual transfer switch, complete with a Russelstoll Maxguard 200 amp, Part #DF2516 FRABK, to provide backup for the total power load at each station.

15.5 Grounding
15.5.1 Passenger Station Grounding System
A principal goal shall be that of designing the passenger station electrical system to provide safety to both personnel and passengers. The design of the grounding system shall preclude any unsafe condition to system personnel, patrons, or the community at large.

Each passenger station shall be equipped with two ground rod beds, one at each end of the passenger station platform, interconnected by a copper cable ground loop embedded in the concrete of the station platform.

A copper bonding connection shall extend from the loop to every canopy-support and lighting fixture support column where it shall be welded by exothermic process. For those stations with
electrical rooms, a grounding plate shall be affixed to one of the four walls. The grounding plate shall be connected to the ground loop in the station platform with a copper cable exothermic-welded at both ends. This grounding plate shall be used for connecting the grounding circuits of equipment placed in the electrical rooms. The passenger station grounding loop shall not be interconnected with any substation ground mat or any other grounding system.

15.5.2 Grounding Requirements

All non-current-carrying metal enclosures and all alternating current equipment shall be securely connected to the grounding system.

All grounded metal surfaces such as fare vending machines, railings, furniture, etc. within 5 feet of a vehicle stopped at the platform shall be insulated to prevent touch potential to ground.

Ground rods shall be copper-clad steel conforming to UL 467, 3/4 inch in diameter by 10 feet in length. Ground rods shall be driven into the ground until tops of rods are approximately 6 inches below finished grade. Where the specified ground resistance cannot be met with the indicated number of ground rods, additional ground rods, longer ground rods, or deep-driven sectional rods shall be installed and connected until the specified resistance is obtained, except that not more than three additional ground rods shall be required at any one installation. Ground rods shall be spaced as evenly as possible at least 6 feet apart and connected below grade.

Service entrance ground wires shall be sized in accordance with NEC Table 250-66. After being located to provide maximum physical protection, exposed ground wires shall be securely attached to structural supports at not more than 2-foot intervals with suitable fasteners. Bends greater than 45 degrees in ground wires are not permitted. Routing of ground conductors through concrete should be avoided, except where specifically called for. When concrete penetration is necessary, nonmetallic conduit shall be cast flush with the points of concrete entrance and exit, so as to provide an opening for the ground wire. The opening shall be sealed with a suitable compound after installation of the ground wire.

Neutral conductors shall be grounded where indicated. Equipment grounding conductors shall be sized in accordance with NEC Table 250-122. Ground wires shall be protected by conduit, where such wires run exposed above grade in non-fence enclosed areas, or are run through concrete construction. Where concrete penetration is necessary, nonmetallic conduit shall be cast flush with the points of concrete entrance and exit, so as to provide an opening for the ground wire. The opening shall be sealed with a suitable compound after installation of the ground wire. Bends greater than 45 degrees in ground wire connections to the ground rods are not permitted.

Equipment frames of motor housings, metallic tanks, metallic equipment enclosures, metal splicing boxes, and other metallic noncurrent-carrying metal items, shall be grounded. Connections to earth shall be made in the same manner as required for system grounding. Equipment or devices operating at less than 750 volts may be connected to secondary neutral grounding electrodes.

Metallic structures and buildings shall be grounded per NEC.
When required, grounding rings shall be installed using 4.0 4/0 bare copper cable with ground rods at least 25 feet intervals using exothermic weld connecting means in accordance with NEC requirements.

It is the intent of these Contract Documents that all device and equipment grounds shall be run as a separate conductor in the conduit from the equipment to the distribution panels or system ground. Wireways and enclosures shall be properly bonded and grounded, and ground conductors shall be run for all circuits.

Equipment cases and devices shall be grounded. Ground rods shall be driven, and concrete encased conduits installed, before a building, or structure is built, and ground conductors brought through the concrete to accessible points for grounding equipment. These systems shall be installed at each structure, where transformers, switchboards, panelboards, and MCCs are installed.

15.6 General Area Lighting

15.6.1 General

Included in this subsection are requirements for normal and emergency lighting systems for general areas along the Valley Metro LRT project.

The lighting system shall:

- Be relatively simple and economical to construct and maintain.
- Be energy-efficient through the use of Light Emitting Diodes (LEDs).
- Be vandal-resistant (in spaces accessible to a patron or to the general public).
- Effectively control glare or other extraneous reflections in the visual field.

Lighting system efficiency shall be achieved by:

- Selecting high efficiency light sources such as the use of LED fixtures;
- Minimizing light spillage; and
- Employing supplementary luminaries to achieve high task-illumination levels.

Consideration should be given to the location and arrangement of lighting circuits and panel configuration to accommodate retrofitted automated energy control devices.

Yard lighting shall provide sufficient illumination to permit operations and maintenance activities to be performed safely on a 24-hour basis. A minimum illumination of minimum-average 1 foot-candle, as measured at ground level between light poles, shall be provided.

Yard lights, towers, poles, or stanchions shall be designed and located to maximize maintenance accessibility, minimize shadows, and avoid interference with operations.
High mast poles used for area illumination shall be climbable and limited to 70 feet in height. Poles with fixture-lowering mechanisms shall not be used. Where practical, poles shall be located in the aisles used for OCS supports.

Fixtures shall be provided with integral ballasts and fuses, as required.

15.6.2 Calculations

Calculations shall conform to the procedures and recommendations in the applicable IES publications (and their appendixes).

Generally, the methods to be followed shall be:

- General lighting of indoor spaces - zonal cavity method
- Indoor task lighting - point-by-point method
- Outdoor spaces - point-by-point

Illumination levels for work areas shall be calculated at the working plane, generally a horizontal plane set at 2'-6" above the finished floor level, except that for task lighting the actual working height shall be used whenever this information is available.

Illumination levels for walking surfaces, egress paths and security lighting shall be calculated at the surface being illuminated, except as otherwise required by codes or regulations or as specified herein.

An average maintenance factor for use in all areas of the transit system lighting other than offices shall not exceed 70%.

Reflectance values shall be based, whenever possible, on the actual reflectances of the proposed materials. Generally, the reflectances shall fall in the recommended range tabulated in Table 15-2. Where specific reflectances are not available, the values in Table 15-3 shall be used.

<table>
<thead>
<tr>
<th>Surface</th>
<th>% Reflectance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Ceilings</td>
<td>60 to 90</td>
</tr>
<tr>
<td>B. Walls</td>
<td>50 to 85</td>
</tr>
<tr>
<td>C. Floors</td>
<td>15 to 35</td>
</tr>
<tr>
<td>D. Furniture & Consoles</td>
<td>20 to 40</td>
</tr>
</tbody>
</table>
Table 15-3: General Areas, Design Percent Reflective Values

Design Percent Reflectance Values
(See Subsection 15.7.2F For Application)

<table>
<thead>
<tr>
<th>Surface</th>
<th>% Reflectance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Office areas</td>
<td></td>
</tr>
<tr>
<td>1. Ceiling</td>
<td>60 to 90</td>
</tr>
<tr>
<td>2. Wall</td>
<td>50 to 85</td>
</tr>
<tr>
<td>3. Floor</td>
<td>15 to 30</td>
</tr>
<tr>
<td>B. Other Indoor Areas</td>
<td></td>
</tr>
<tr>
<td>1. Ceiling</td>
<td>50</td>
</tr>
<tr>
<td>2. Wall</td>
<td>50</td>
</tr>
<tr>
<td>3. Floor</td>
<td>10</td>
</tr>
<tr>
<td>C. Outdoor Areas</td>
<td></td>
</tr>
<tr>
<td>1. Ceiling</td>
<td>10</td>
</tr>
<tr>
<td>2. Wall</td>
<td>50</td>
</tr>
<tr>
<td>3. Floor</td>
<td>10</td>
</tr>
</tbody>
</table>

15.6.3 Illuminance Values

The design target illuminances shall be the minimum maintained values as listed in Table 15-4. However, illumination levels for tasks requiring sustained visibility shall be a minimum of 20 foot-candles or as required by local jurisdiction.

Illuminance values not listed shall be those recommended by the IES or CPTED for the particular (or sufficiently similar) activity, using a zero weighting factor.

The illumination on all entrance and exit roadways shall be graduated up or down to the illumination level of the public street or highway, as much as practical.

Illumination for access roadways shall be in accordance with IES RP-8 recommended levels for the local intermediate vehicular traffic classification, with an “R2” roadway surface.

Public Street illuminance values shall be based on local jurisdiction standards.

Table 15-4: Normal Lighting Levels, Target Illuminance Values
(Average, Maintained In A Horizontal Plane Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Foot-Candles</th>
<th>At</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Platform under canopy cover</td>
<td>5</td>
</tr>
<tr>
<td>2. Platform edges, under canopy cover</td>
<td>5</td>
</tr>
<tr>
<td>3. Platforms, uncovered</td>
<td>5</td>
</tr>
<tr>
<td>4. Platform edges, uncovered</td>
<td>5</td>
</tr>
<tr>
<td>5. Fare collections areas</td>
<td></td>
</tr>
<tr>
<td>a. Service</td>
<td>5</td>
</tr>
<tr>
<td>b. On face of machine</td>
<td>20</td>
</tr>
<tr>
<td>c. Area illumination</td>
<td>20</td>
</tr>
<tr>
<td>6. Passages</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 15-4: Normal Lighting Levels, Target Illuminance Values (continued)
(Average, Maintained In A Horizontal Plane Unless Otherwise Noted)

<table>
<thead>
<tr>
<th></th>
<th>Foot-Candles</th>
<th>At</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Stairs</td>
<td>25</td>
<td>On treads at landings</td>
</tr>
<tr>
<td>8. Walkways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Ramps leading to platforms</td>
<td>5</td>
<td>Floor level</td>
</tr>
<tr>
<td>b. Connecting with public walkways</td>
<td>2</td>
<td>Floor level</td>
</tr>
<tr>
<td>9. Elevator Cabs</td>
<td>20</td>
<td>At Floor level</td>
</tr>
<tr>
<td>10. Electrical and mechanical, elevator machine, communication rooms</td>
<td>20</td>
<td>2'-6" above floor level</td>
</tr>
<tr>
<td>11. Service and Utility Rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Storage rooms</td>
<td>5</td>
<td>2'-6" above floor level</td>
</tr>
<tr>
<td>B. Passenger loading areas (outside of station platforms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Bus loading</td>
<td>5</td>
<td>Floor level</td>
</tr>
<tr>
<td>2. Bus Loops</td>
<td>2</td>
<td>Floor level</td>
</tr>
<tr>
<td>3. Kiss and Ride areas</td>
<td>5</td>
<td>Floor level</td>
</tr>
<tr>
<td>C. Parking Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Self-parking</td>
<td>2</td>
<td>At pavement</td>
</tr>
<tr>
<td>2. Pedestrian walkway</td>
<td>3</td>
<td>At pavement</td>
</tr>
<tr>
<td>3. Entrance and exit roadways</td>
<td>2</td>
<td>At pavement (See Section 15.7.3C)</td>
</tr>
<tr>
<td>D. Transit Right-of-Way and Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Yard and other special trackwork areas</td>
<td>1 (minimum)</td>
<td>At rail level</td>
</tr>
<tr>
<td>2. Transit vehicle storage area</td>
<td>2</td>
<td>At rail level</td>
</tr>
<tr>
<td>E. Operations and Central Control Facility (Central Control Room)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. General Illumination</td>
<td>100</td>
<td>2'-6" above floor level</td>
</tr>
<tr>
<td>2. Face of Control Panels</td>
<td>30</td>
<td>Vertical</td>
</tr>
<tr>
<td>3. Shining on CRT displays</td>
<td>3</td>
<td>Vertical</td>
</tr>
<tr>
<td>4. Rear of Control Panels</td>
<td>10</td>
<td>Vertical</td>
</tr>
<tr>
<td>5. Dispatch Desks</td>
<td>50</td>
<td>Vertical</td>
</tr>
<tr>
<td>6. Shining on rear projection displays</td>
<td>3</td>
<td>At desk level</td>
</tr>
<tr>
<td>F. Maintenance in Central Control Facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Inspection Area</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2. Repair Work Area</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Illumination levels shall be variable ± 50 percent of levels indicated

G. Yards and Shops		
1. Paint Shop Area	30 to 50	
2. Paint Both “Inside”	100	
3. Wheel Truing Area	100	
4. Car Wash Area	50	
5. Offices	50	
6. Maintenance Area	50 to 70	

H. Outside Areas		
1 Foot-candle minimum for emergency egress.		
5 Foot-candles minimum outside building entrance and parking stalls for individuals with disabilities for minimum 15 feet radius.	Floor level	

| I. Storage Tracks | | |
| 1 Foot-candle minimum, in the aisles with cars parked on the tracks and casting shadows. | Floor level |
15.6.4 Light Control

Outdoor luminaires shall be so positioned that they do not result in glare or otherwise hinder nighttime train movements. Care must be taken to minimize glare on adjacent properties or to motorists. This is particularly important in residential areas.

Recommended target brightness ratios are given in Table 15-5.

Table 15-5: Normal Lighting Levels, Target Brightness Ratios

<table>
<thead>
<tr>
<th>Area</th>
<th>Brightness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Between stairs, escalators, etc. to general platform, concourse or mezzanine areas</td>
<td>2 to 1</td>
</tr>
<tr>
<td>B. Station interior spaces</td>
<td></td>
</tr>
<tr>
<td>1. Wall to floor</td>
<td>3 to 1</td>
</tr>
<tr>
<td>2. Wall to ceiling</td>
<td>1 to 3</td>
</tr>
<tr>
<td>3. Luminous coffers to walls and/or adjacent horizontal surfaces</td>
<td>10 to 1</td>
</tr>
<tr>
<td>4. Luminaires to adjacent surfaces</td>
<td>20 to 1</td>
</tr>
<tr>
<td>C. Station exterior areas</td>
<td></td>
</tr>
<tr>
<td>1. Wall to floor</td>
<td>No limit set</td>
</tr>
<tr>
<td>2. Wall to ceiling</td>
<td>No limit set</td>
</tr>
<tr>
<td>3. Luminaires to adjacent surfaces</td>
<td>40 to 1</td>
</tr>
<tr>
<td>D. Switchrooms or other control and equipment rooms</td>
<td></td>
</tr>
<tr>
<td>1. Wall to floor</td>
<td>3 to 1</td>
</tr>
<tr>
<td>2. Wall to ceiling</td>
<td>1 to 3</td>
</tr>
<tr>
<td>3. Luminaires to adjacent surfaces</td>
<td>20 to 1</td>
</tr>
</tbody>
</table>

Small areas for accent, design interest, or message purposes, such as for station identification, destination sign, map case, safety or guidance, shall be allowed to have brightness ratios in excess of the preceding criteria.

Luminaires in staffed control rooms shall be so positioned that no reflected glare from meter faces or cathode ray tube monitoring screens meets the operator's eyes while at his workstation.

15.6.5 Emergency Illuminance Values

Emergency average target levels shall be, maintained at values as listed in Table 15-6.

Table 15-6: Emergency Lighting Levels, Target Illuminance Values

<table>
<thead>
<tr>
<th>Area</th>
<th>Illumination Minimum Levels in Foot-Candles (fc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service and other utility or equipment rooms accessible to maintenance crew during power outage</td>
<td>1</td>
</tr>
<tr>
<td>Electrical service room</td>
<td>0.5</td>
</tr>
<tr>
<td>Stairs</td>
<td>1</td>
</tr>
<tr>
<td>Underground areas</td>
<td>1</td>
</tr>
<tr>
<td>Yard and shop areas</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.25 FC along roadway</td>
</tr>
</tbody>
</table>
Emergency lighting fixtures exit lights shall be located to minimize the possibility of being obscured by stratified smoke from a fire.

15.6.6 Emergency Lighting

The emergency lighting system shall consist of fluorescent or quartz lamps fed by an emergency lighting power supply unit and which do not require re-strike time after normal power fails.

Emergency lighting levels shall be per Table 15-6.

All emergency lighting branch circuits shall be carried in separate conduits running from the emergency lighting power supply unit to the emergency lighting fixture. Pull boxes shall be separate boxes or common boxes with barriers. All other requirements shall conform to National Electric Code Article 700.

15.6.7 Emergency Lighting Control

Emergency lighting branch circuits shall be controlled by an automatic transfer switch in the emergency lighting power supply unit which switches on when normal power fails and off (after an adjustable time delay of 0-20 minutes) after normal power returns.

For at-grade, elevated passenger stations and at the yard areas, emergency light circuits shall also be controlled by an externally mounted photocell unit, which prevents the emergency lights from operating during the daytime.

The photocell unit shall be located where no artificial light interferes with its function.

15.7 Street Lighting

15.7.1 General

The purpose of this section is to outline the design process for street lighting along the light rail segment. Design criteria for street lighting differs among different jurisdictions within the Phoenix metropolitan area. For this reason, design criteria for street lighting for the light rail shall differ across cities as well and be governed by those cities and utilities that the light rail resides.

15.7.2 City of Phoenix

Lighting design criteria for Valley Metro LRT projects located in the City of Phoenix shall be governed by the Street Lighting Policy for the City of Phoenix, Arizona originally adopted by Phoenix City Council in July of 1961. Any street light design in the City of Phoenix associated with the Valley Metro LRT project must conform to the current City of Phoenix Street Light Standards.

15.7.3 City of Mesa

Lighting design criteria for Valley Metro LRT projects located in the City of Mesa shall be governed by the Chapter 9 of the Engineering and Design Standards – Public Street Lighting Requirements. Any street light design in the City of Mesa associated with the Valley Metro LRT
project must refer to this document. The following is from the current Chapter 9 of the Engineering and Design Standards from the City of Mesa. The City of Mesa is now using LED streetlights and on traffic signals and lights.

15.7.4 City of Tempe

Lighting design criteria for Valley Metro LRT projects located in the City of Tempe shall be governed by the Street Lighting Requirements located within the Engineering Design Manual for the City of Tempe. Any street light design within the City of Tempe associated with the Valley Metro LRT project must refer to this document.

15.7.5 City of Glendale

Street light design criteria for the City of Glendale is in accordance with the Street Lighting Manual for the City of Glendale. Any street light design within the City of Glendale associated with the Valley Metro LRT project must refer to this document.

15.7.6 Salt River Project

Verify with each city’s design manual for specific requirements for SRP. Street light design located in SRP jurisdictions must comply with all SRP design guidelines as well as what each city requires for SRP coordination with street lighting design.

15.7.7 Arizona Public Service

Street light design located in APS jurisdiction must comply with all APS design guidelines. Verify with each city’s design manual for specific requirements for APS. Street light design located in APS jurisdictions must comply with all APS design guidelines as well as what each city requires for APS coordination with street lighting design.

15.7.8 Arizona Department of Transportation

A professional engineer of the appropriate discipline registered in the State of Arizona or a Certified Lighting Designer shall be utilized to prepare the roadway lighting design and appropriate calculations relative to illumination levels. Illumination design shall follow the recommendations of the Roadway Lighting Design Guide of the American Association of State Highway and Transportation Officials (AASHTO). The illuminance criteria with light loss factors of 0.80 (HPS) is to be used to determine conformity with AASHTO and ADOT street lighting guidelines.

All lighting design materials and equipment shall meet the requirements of the latest edition of the ADOT Standard Specifications for Road and Bridge Construction and the latest edition of the ADOT Traffic Signals and Lighting Standard Drawings.

The lighting system installation shall also comply with the latest edition of the ADOT Standard Specifications for Road and Bridge Construction and the latest edition of the ADOT Traffic Signals and Lighting Standard Drawings.
16.0 TRAFFIC CONTROL

16.1 Introduction

The purpose of this chapter is to establish the traffic engineering standards and design criteria for the Valley Metro LRT system. The standards and criteria relate to the design of traffic signal systems, signing, and pavement markings as they apply to the interface of the LRT guideway and train operations with the arterial and highway system.

16.2 Applicable Standards

Vehicular traffic and pedestrian signals, signs, and pavement markings shall be in accordance with the practices of the city and local jurisdictions in which the system will be constructed, the Manual on Uniform Traffic Control Devices for Streets and Highways (MUTCD) published by the U.S. Department of Transportation, the Arizona Supplement to the MUTCD, Traffic Control Devices Handbook, 2nd Edition, and Arizona Department of Transportation (ADOT) standards. Materials and equipment used in each installation and/or modification of traffic signal systems, signing, and pavement markings shall conform to the latest specifications of the jurisdictional authority at the location of the installation and as noted here.

16.3 General Design Criteria

Where LRT trains will operate within public streets, the guideway shall be located in reserved lanes separated from those serving general traffic. The width of these lanes must be equal to or greater than the width of the dynamic clearance envelope of the trains.

The separation shall be accomplished by vertical curb and/or other approved means that shall physically deter vehicles traveling in parallel lanes from encroaching into the guideway. Where the roadway adjacent to the guideway comprises only a single lane with a width of less than 18 feet, there should be provision for vehicles to bypass an obstruction in the travel lane. Mountable curbing should be used for separation to allow encroachment into the guideway for that purpose.

Raised pavement markings, rumble strips, or buttons may be substituted where conventional curbing is not practical.

Whatever type of delineation is used, it must be installed entirely outside the dynamic envelope for the LRT vehicles. The delineated guideway shall include the passenger station platforms and any refuge zones that may be needed to accommodate pedestrians crossing the tracks.

16.4 Locations of Train Interface with Traffic

Traffic movements (vehicular and pedestrian) across the LRT tracks shall be restricted to existing signalized intersections wherever possible. At existing signalized intersections that will include an LRT guideway crossing, the signalization shall be revised as necessary to provide time separation of LRT movements from all conflicting vehicular and pedestrian movements.
New signalization may be considered where guideway crossings occur at intersections with public streets that are not currently signalized if one or more of the following criteria are satisfied:

- The conditions at the intersection location satisfy one or more of the MUTCD traffic signal warrants.
- Denial of a particular movement across the guideway would result in unreasonable travel time.
- The diverted movements cannot be accommodated safely at other crossing locations.
- An intersection upon which the diverted traffic would be imposed does not have sufficient capacity to accommodate it.

Where the criteria call for consideration of a new guideway crossing, a site-specific study of the impact of the crossing shall be conducted. These studies may include review of traffic volumes, circulation patterns, traffic signal spacing, and capacity of adjacent signalized intersections. At intersections where traffic movements across the guideway are allowed, traffic signals or other appropriate positive control devices shall be provided to control conflicts (refer to next section).

At intersections with public streets where traffic movements across the median would be prohibited, these movements would be diverted to other controlled locations. Site-specific studies of the impact of those diversions shall be conducted. The studies shall include re-assignment of the diverted volumes to signalized locations where U-turns can be accommodated, followed by analyses of the traffic operations and related roadway geometry modifications at those locations. If these analyses determine that the resulting volume of turning movements cannot be accommodated without excessive delay or spillback of queues into through lanes, and that there are no reasonable alternative routes for the diverted traffic, traffic movements across the trackway may then be allowed as an exception. In that eventuality, traffic signals or other active devices shall be installed to control the conflicts of vehicle and LRT movements.

Unless specifically approved by Valley Metro, vehicle turning movements across the LRT tracks into and out of private driveways shall be prohibited. Consideration of exceptions that would allow new median openings for access to/from private driveways shall be based on the findings of site-specific studies, which may include review of traffic volumes, circulation patterns, and land use. The site-specific studies shall be the same as conducted for the non-signalized intersections with public streets but shall also include consideration of the type and intensity of the land use served by the private driveway and the number of existing and future vehicle trips generated by the land use. At locations where movements must be allowed, traffic signals and/or other appropriate active devices shall be provided to control conflicting movements.

16.5 Control of Train Interface with Traffic

All intersection crossings of the guideway shall be controlled by active devices that will temporarily separate LRT train movements from conflicting vehicular and pedestrian movements. Control by positive devices is necessary to assure the safe and efficient operation of the LRT and street system and that the LRT system is in compliance with the MUTCD.
Crossings that are integral with adjacent railroad tracks shall be controlled with flashing lights and automatic gates in conformance with MUTCD Part 8. Other types of crossings may be equipped with this type of control if such is supported by an engineering study.

At guideway crossings of public streets not equipped with railroad-type flashing lights and automatic gates and at street intersections that include an LRT guideway, standard highway-type traffic signals shall be used to control vehicular and pedestrian traffic. These signals shall be designed and installed in accordance with the MUTCD and standards of the city having jurisdiction over the roadways at the location of the installation. The signals shall be controlled through use of transit signal priority, where agreed to by Valley Metro in the intergovernmental agreement. Transit signal priority is defined as a traffic signal system that has the ability to accept advance detection of approaching light rail vehicles with tracking confirmation of the vehicles at preceding upstream intersections.

Blank-out turn prohibition signs are internally illuminated signs showing a symbol and/or word message. These blank-out signs may be used in concert with movable barrier arms or as primary control at non-intersection crossings, such as driveways and alleys, that cannot be eliminated and for which traffic signal control is unsuitable. Blank-out signs may also be used as a supplemental control device at signalized intersections to control low-speed vehicle turning movements.

The design and placement of all devices controlling general traffic shall conform to the MUTCD and must be approved by the city having jurisdiction. Highway-light rail transit grade crossings in semi-exclusive alignments shall be equipped with a combination of automatic gates and flashing-light signals, or flashing-light signals only, or traffic control signals, unless an engineering study indicates that the use of STOP, YIELD, or advance warning signs alone would be adequate. Highway-light rail transit grade crossings in mixed-use alignments may be equipped with traffic control signals unless an engineering study indicates that the use of STOP, YIELD, or advance warning signs alone would be adequate.

Coordination shall be undertaken by the Designer and the agencies responsible for operating and maintaining the roadway and traffic signals at each affected intersection or crossing to determine the type, location, phasing, and timing of the signals; the methods of detecting vehicles, pedestrians and LRT trains; and also of interfacing the control at each location with existing traffic signal systems.

Where LRT trains operate through signalized street intersections in conjunction with emergency vehicle pre-emption, priority shall be given to the emergency vehicle. Appropriate clearance times shall be given to trains, vehicles and pedestrians to allow them to stop or clear the intersection during the preemption clearance intervals.

At each intersection through which the trains will operate, special signals shall be provided to control train movements. They shall be designed to display indications that resemble those found in Part 8 of the MUTCD, Section 8C.11 and do not resemble those displayed by conventional traffic signals. To achieve this, the indications shall be conveyed by illuminated elongated rectangles or bars, all of which shall be lunar or incandescent white in color. No other colors are permitted. The illumination shall be steady or flashing as specified herein, and may be provided by light emitting diode (LED) technology or lamps. The “Stop” indication (equivalent of a red vehicular signal) shall be conveyed by a steady rectangular bar in a horizontal position.
The “Proceed” indication, (equivalent of a vehicular green signal) shall be conveyed by a steady rectangular bar in a vertical position. The “Prepare to Stop” indication (equivalent of a vehicular yellow signal) shall be conveyed by a flashing rectangular bar in a vertical position. The “stop” (horizontal bar) and “proceed” (vertical bar) indications shall be in two separate housings, unless otherwise approved or dictated by Valley Metro. Placement of bars signals with respect to distance from the intersection (defined by the projection of the curb lines) shall be uniform, free from obstructions from signage or OCS poles. The signals shall be visible for 600’ upstream of the intersection along the track centerline. The distance from the intersection shall not exceed 45 feet, unless otherwise approved by Valley Metro.

Where pedestrians must cross LRT tracks, appropriate control devices shall be provided. Where a pedestrian crossing is part of a signalized street intersection, control shall be provided by means of standard vehicle and pedestrian traffic signals. The traffic signals shall be timed to allow pedestrians sufficient time to cross the entire street in a single phase. At locations other than signalized street intersections, where justified by a site-specific engineering study, these devices may be supplanted or supplemented by passive signs, active signs, pavement markings/textures, flashing beacons, channeling devices, automatic gates, or any combination thereof. Passengers using walkways across the trackway within stations should be regulated by passive measures unless an engineering study indicates that other measures are necessary.

Where pedestrians cross a trackway that is located in the median of a street or highway, a refuge zone shall be provided within the median, but outside the dynamic clearance envelope of the LRT trains. Pedestrian prohibition signing may be required at locations where it is not safe or crossings are not accessible.

16.6 Sign Design

Signing regulating vehicle and pedestrian traffic at interface with the LRT guideway shall be installed in accordance with the MUTCD, standards of the city having jurisdiction at the location of the installation, and ADOT standards. In situations where sign requirements are not addressed by these standards, special signing shall be developed by the Designer in coordination with the city having jurisdiction over the roadway. The Designer shall work with all the agencies involved in the project and strive to incorporate uniform special signing applications.

16.7 Pavement Marking Design

Pavement markings related to the LRT operation shall be installed in accordance with the MUTCD, standards of the city having jurisdiction at the location of the installation, and ADOT standards. If an engineering study determines that special markings shall be installed to delineate the dynamic clearance envelope of the LRT trains, those markings shall conform, as is practical, to the MUTCD. In situations where marking requirements are not addressed by these standards, appropriate designs shall be developed by the Designer in coordination with the city having jurisdiction. The Designer shall work with all the agencies involved in the project and strive to incorporate uniform special pavement marking applications.
16.8 General Operations

Where LRT trains operate in or adjacent to general traffic lanes without an intervening barrier or curb, they shall travel no faster than the parallel roadway speed limit.

At signalized intersections and at crossings not controlled by automatic gates, LRT cars shall approach at speeds that permit them to stop short of the point of conflict if the guideway is already occupied.

At crossings controlled by flashing signals and automatic gates, a raised median shall be installed on each approach of a two-way street. This median shall extend from the crossing to a point nominally 100 feet upstream.
17.0 SAFETY

17.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the design, construction, and commissioning of the system’s safety elements on the Valley Metro LRT Project. To ensure safety of the system and to mitigate hazards on the project the designer and contractors shall comply with current edition of Valley Metro’s System Safety Program Plan (SSPP), System Security Program Plan (SSecPP), Emergency Management Plan (EMP), and Safety and Security Certification Plan (SSCP). When these safety and security documents are revised, the designer and contractors shall review the revised documents, determine if any revisions in the design are necessary due to the revised document, and request direction from Valley Metro whether to implement the changes or not.

17.2 System Safety Program

The System Safety Program’s goal is to provide transit system facilities and operations that minimize hazards to the employees, patrons, contractors, first responders, and the general public that operate, maintain, construct, use or are in the vicinity of transit operations.

To accommodate this goal, engineering designs shall be reviewed to determine if hazards have been identified and eliminated, and minimized or controlled to an appropriate level throughout the intended service life. Engineering designs must satisfy System Safety Criteria requirements applicable to the individual systems and elements.

A vital part of the System Safety Program is the System Safety Program Plan (SSPP) that has been developed and adopted by Valley Metro. The SSPP is a document that, as a minimum, must comply with the State Safety Oversight (SSO) Agency’s System Safety Program Standard (SSPS) for Rail Fixed Guideway Systems. The SSO Agency responsible for oversight of the Valley Metro LRT system is the Arizona Department of Transportation (ADOT), current edition.

17.3 System Safety Criteria

These criteria for systems, fixed facilities, structural designs, and subsequent operational procedures shall ensure that the system safety goals are implemented and documented through all aspects of design development, construction, implementation, test, operations, and maintenance. The System Safety analyses shall be performed according to MIL 882 standards.

Some general system safety design requirements are:

- Hazards that have been identified during design or experienced in the field shall be eliminated, avoided, reduced or controlled in accordance with the following order of safety precedence:
 - Design to eliminate hazard (design selection, material selection or substitution).
 - Design to control hazard.
 - Provide safety devices.
Provide warning devices.

- Control with special procedures and training.
- Conditionally accept remaining residual risks.

Qualitative and quantitative analyses shall be performed, documented and furnished as part of the design process to ensure adequate consideration of safety. As a minimum, the designer shall conduct a Preliminary Hazard Analysis (PHA) for the project. Other detailed analyses including a Sub-system Hazard Analysis (SSHA), a System Hazard Analysis (SHA), and an Operating and Support Hazard Analysis (O&SHA) shall also be conducted as required.

As the designer develops and completes the Hazards Analysis, he/she shall maintain a safety Certifiable Items List (CIL). This list shall be used as the basis to develop design modifications and operating and maintenance procedures to eliminate or control the hazards.

Safety information and procedures shall be developed for inclusion in instructions and publications. These shall include, but not be limited to, normal and emergency operations.

Minimize exposure of personnel operating, maintaining, or repairing equipment to hazards such as entrapment, chemical burns, electrical shock, cutting edges, sharp points, electromagnetic radiation, or toxic atmospheres.

Emergency equipment/devises for public use shall be clearly identified and accessible. Interlocks, cutouts, fittings, etc., shall be accessible through access panels, which shall be secured to prevent tampering and vandalism.

Where failures could result in personal injury, major system damage, or inadvertent operation of safety critical equipment, redundancy or fail-safe principles shall be incorporated into the design.

Physical and functional interfaces between subsystems shall be analyzed. Those hazards associated with interfaces shall be specifically identified as system integration hazards and tracked for effective resolution.

There shall be no single-point failures in the system that can result in an unacceptable or undesirable hazard condition.

If an unacceptable or undesirable hazard condition can be caused by combining multiple incident failures, then the first failure shall be detected, and the system shall achieve a known safe state before subsequent failures occur.

All safety critical elements in a vital system shall be designed and implemented with fail-safe principles. Fail-safe principles shall be realized by designing the system to have intrinsically safe failure characteristics or by designing the system with verifiable techniques that detect potentially unsafe failures and ensure that the system reverts to a known safe state.

- The following criteria shall be used, as a minimum, for implementing fail-safe functions and vital circuits:
Component failures or loss of input signals shall not cause unsafe consequences and shall not, when added to other failures, cause unsafe consequences.

Any number of simultaneous component failures attributable to the same cause or related causes shall not result in an unsafe condition.

The following criteria shall apply to electrical/electronic circuits:

- Broken wires, damaged or dirty contacts, relays failing to respond when energized, or loss of power shall not result in an unsafe condition.
- The relays used in vital circuits shall conform to all applicable parts of the AREMA Communications and Signals Manual of Recommended Practice, Section 6, Relays.
- Circuitry components shall be considered able to fail in either the open or shorted condition. It shall be assumed that multi-terminal devices can fail with any combination of opens, shorts, or partial shorts between terminals. Protection shall be provided in the event that any amplifier is subject to spurious oscillations at any frequency.

Where redundancy is used in a safety critical area, there shall be no single point of failure that would result in the loss of safety protection. Redundant paths shall not contain a common predominant failure mode.

Design shall include component interlocks wherever an out-of-sequence operation can cause a hazard.

Suitable warning and caution notes in operating, assembly, maintenance and repair instructions, and distinctive markings on hazardous components, equipment, or facilities for personal protection, shall be provided.

Color-coding used for equipment and facilities shall be uniform.

Each design shall be evaluated for hazards to identify basic deficiencies, inherent hazards of operation, safety critical malfunctions, maintenance hazards, human factors deficiencies, environmental hazards procedural deficiencies, and for compliance with codes, standards, and regulations. Written documentation of this evaluation shall be provided at the time final design is accepted.

The safety system analysis shall include review of fixed facilities and structures for employee access and maintenance safety.

Maintenance activities required to preserve or achieve risk levels shall be prescribed to the Operations Manager during the design phase. These maintenance activities shall be minimized in both frequency and in complexity of their implementation. The personnel qualifications required to adequately implement these activities shall also be identified.

Software faults shall not cause an unacceptable or undesirable hazard condition.

Unacceptable hazards shall be eliminated by design.

Hazardous substances, components and operations shall be isolated from other activities, areas, personnel and incompatible materials.
• Risk resulting from excessive environmental conditions (e.g. temperature, pressure, noise, toxicity, acceleration, and vibration) shall be minimized.

17.4 System Safety Program Plan

17.4.1 Purpose, Goal, Objectives

The purpose of the System Safety Program Plan (SSPP) is to establish requirements for identification, evaluation and minimization of safety risks throughout all phases of the Valley Metro LRT Project. Requirements are defined in the following areas:

• Implementation of established safety criteria;
• Processes for identification and assessment of safety hazards early in the design phase; and
• Methods to eliminate minimize or control the identification of critical and catastrophic hazards.

The goal of the SSPP is to provide a level of safety compliant with all applicable codes, guidelines, regulations and standards; and to establish a safety philosophy that emphasizes preventive measures to eliminate unsafe conditions.

The objectives of the SSPP are to identify design and management controls, plans and processes to:

• Perform all necessary safety analyses to identify and assess safety hazards;
• Analyze historical data from other similar light rail systems;
• Develop and implement a safety certification program to document that safety requirements are incorporated into the design of the Valley Metro LRT Project, safety items have been properly installed in the field, materials have been provided to train Valley Metro LRT operations personnel, and integrated tests and emergency drills have been conducted to ensure that all systems and equipment function as designed;
• Develop document controls that attest to safety throughout the design, construction, procurement and testing of the Valley Metro LRT Project; and
• Coordinate safety initiatives with quality, reliability and maintainability activities.

17.4.1.1 Codes and Standards

Detailed codes and standards references are included in each of the system sub-components in the respective chapters of the Design Criteria Manual (DCM). General references to safety specific criteria are included in this Safety section of the DCM.

The following documents were used as guidance or reference for the SSPP.

• Compliance Guidelines for States with New Starts Projects, DOT-FTA-MA-5006-00-1, U.S. Department of Transportation, Federal Transit Administration.
• Hazard Analysis Guidelines for Transit Project, DOT-FTA-MA-26-5005-00-01, U.S. Department of Transportation Federal Transit Administration.

In addition to the documents listed above, the design shall be in accordance with the following standards. If the standards requirements conflict, the most stringent requirement shall apply.

• Standards for Rail Fixed Guideway Systems, CCR 723-14.
• National Fire Protection Association (NFPA) – 1, 2, 10, 13, 14, 70, 72, 90A, 101, 130
• Federal Occupational Safety and Health Administration (OSHA) Standards
 • (General Industry), 29 CFR 1910
 • (Construction Industry), 29 CFR 1926
• Uniform Building Code (UBC) and/or International Building Code (IBC) as applicable, supplemented by local municipal code amendments.
• Uniform Fire Code (UFC) and/or International Fire Code (IFC), supplemented by local municipal code amendments.

The following regulations and guidelines shall be considered in the design of the Valley Metro LRT Project, where applicable:

• Integration of Light Rail Transit Into City Streets – Transit Cooperative Research Program (TCRP) Report 17.
• American Public Transit Association (APTA) Guidelines for the Design of Rapid Transit Facilities.

17.5 Project Safety Organization

17.5.1 Fire/Life Safety and Security Committee

The purpose of the Fire/Life Safety and Security Committee (FLSSC) is to serve as a liaison between the Valley Metro LRT Project Team, fire and police jurisdictions, and emergency response agencies. The FLSSC is composed of representatives from local fire and police jurisdictions, local emergency response agencies, and Valley Metro LRT Project Team system safety and security, engineering and construction management staff.
17.5.2 Safety and Security Certification Review Committee

The Safety and Security Certification Review Committee (SSCRC) is responsible for assessing hazards and overseeing compliance with the Safety Certification Program. The SSCRC is responsible for:

- Reviewing documentation (evidence of conformance or compliance to safety requirements), assigning responsibilities for open safety issues and approval of certification documentation, conducting site visits and defining safety-related tests and analyses, as required;
- Defining the specific method to mitigate the conditions or potential hazard; and
- Determining whether to accept specific conditions or require corrective action, including providing recommendations to the designers regarding certification and noncompliance of system elements.

The SSCRC is composed of senior management personnel, or designees, who represent the following areas: systems engineering, facilities engineering, station design, safety and security, operations, and Valley Metro consultants.

17.6 Hazard Identification, Analysis and Resolution

Hazard identification, analysis and resolution is the formal process to identify, evaluate and mitigate hazards associated with the design, construction, testing, startup and operation of the Valley Metro LRT that have the potential to result in death, severe injury, multiple injury, system loss, major system damage, or major environmental impact. For each Project, the designer shall prepare a list of all known hazards, categorized by severity and probability of occurrence, analyze them for potential impact and recommended resolution measures by design, procedures, warning devices or other methods so that they fall within the prescribed level of risk acceptable to the Valley Metro LRT Project Team. The designer shall develop and implement a Hazard Identification, Analysis and Resolution Plan for the Valley Metro LRT Project. Designers shall also prepare and maintain a Safety Open Items List (SOIL), which identifies Category I and II hazards. For more information regarding the Hazard Management Process see SSPP Section 7.0.

17.7 Construction Safety

Construction contractors working on the Valley Metro LRT Project shall prepare a Construction Safety Plan, which emphasizes prevention of injuries to persons and damage to property and equipment during construction activities for the Valley Metro LRT Project. These Plans shall be approved by the Resident Engineer of the LRT Project Team, and reviewed by the Valley Metro Chief of Safety and Security, and the SSCRC, and shall be periodically audited. See SSPP Section 22 for additional information.

17.8 Safety and Security Certification Program

A major activity required under the SSPP is the implementation of a Safety and Security Certification Program for design and construction projects. Safety Certification Program is a process developed to verify, by documentation, that safety requirements are incorporated in
design, construction, procurement activities, training, and operations of rail transit systems. The goal is to develop objective evidence that an optimized level of safety and security for patrons, employees, first responders, and the public has been achieved and incorporated into the new system. For more information on the Safety and Security Certification Program see SSPP Section 15.0.

A Safety and Security Certification Plan (SSCP) has been prepared for Valley Metro LRT projects. A similar SSCP, tailored to the specific project, shall be developed for each future rail line or extension with input from the designer. The designer or contractor responsible shall implement its portion of the SSCP. Designer/Contractor-provided documentation shall be reviewed by the Valley Metro and reviewed and approved by the SSCRC.

The SSCP verifies that all certifiable safety items are satisfactorily completed prior to revenue service to ensure a safe and secure Valley Metro LRT system. Furthermore, the SSCP shall provide a documented basis for loss control, risk management, and the reduction/elimination of liability exposure to Valley Metro.

The Designer shall develop design and construction safety certification checklists, for each certifiable element, in accordance with the approved SSCP. The design checklists shall identify all applicable safety and security related design criteria, codes and standards, and indicate where in the contract documents each requirement has been addressed, down to the sub-element level. Once approved, the designer shall prepare construction checklists, for use by the Contractor, which verify that each safety and security requirement has been designed, constructed, installed and tested in accordance with contract requirements. In addition to the design and construction checklists, the designer shall prepare checklists for Valley Metro managed activities related to Systems, such as, but not limited to, Integration Testing, Operations and Maintenance Training, Emergency Response Training and Drills, and Operating and Maintenance Rules and Procedures. The Designer shall include all pertinent items included in the Preliminary Hazard Analysis in the checklists. Checklist requirements, such as format, content, and level of detail, shall be coordinated with Valley Metro prior to development of each checklist.

The SSCP consists of a three-part verification document for each element of the system. The first part details the system/element safety requirement. The second part affirms that the design complies with the safety requirement. The third part verifies and acknowledges that the system or element was constructed, installed and tested in accordance with contract requirements. The designer has the lead role in the first two parts of the system described above.

The SSCP objectives are to ensure that the following safety and security requirements have been satisfied:

- Facilities and equipment have been designed, constructed, installed, inspected and tested in accordance with applicable codes, standards, criteria, and specifications.
- Procedures, rules, operating and maintenance manuals and other documentation have been adequately developed.
- Operations and Maintenance personnel have been trained and are certified to perform their respective functions.
Emergency response agencies have been adequately prepared and drilled to respond to emergency situations on the system.

Identified hazards have been eliminated or controlled to acceptable levels.

The SSCP shall define the implementation of the Safety Certification Program. Key activities of the SSCP include:

- Identify and document the safety and security Certifiable Items Lists (CIL) of the project;
- Specify and apply safety and security requirements to these certifiable items into the design criteria, design manuals, contract specifications, and safety and security analysis;
- Implement a program of hazard and vulnerability analysis and tracking;
- Implement a systematic review program to verify safety and security requirements are included in plans, specifications and drawings, test plans, procedures, and operational assessments;
- Implement a dedicated testing and evaluation program to verify that safety and security certifiable items comply with the contract specifications, and that an acceptable level of operational readiness and emergency preparedness exists, and that tests are conducted to verify the ability of the systems and equipment to function safely as designed;
- Verify all plans, procedures, maintenance manuals and training programs are developed and implemented prior to the start of revenue service;
- Responsible Valley Metro LRT Project Team personnel verify that the certifiable items are completed. Issue written Certificates of Compliance (COC) for each certifiable item, indicating that it meets established safety and security requirements;
- Valley Metro Chief, Safety and Security shall prepare and issue a Draft and Final Safety and Security Certification/Verification Report, verifying the project’s readiness for safe and secure service prior to commencement of revenue service.
- CEO shall issue a Safety Certification Statement to the FTA, ADOT, and Valley Metro’s Board of Directors.

17.9 Detailed Safety Criteria

Detailed safety related criteria for various subsystems of the Valley Metro Project are covered in the applicable sections of this Design Criteria Manual. Some specific topics relating to safety include:

- Fencing and Barriers – Refer to Sections 3 and 6
- Grade Crossings and Traffic Control Sections – Refer to Sections 4, 7, 11 and 16
- Emergency access/egress, station design, and walkways – Refer to Sections 6 and 7
- Emergency Call Boxes – Refer to Sections 6 and 12
- Video Surveillance – Refer to Sections 6 and 12
- Safety Materials – Refer to Section 6
• Light Rail Vehicles – Refer to Sections 7 and 8
• Operations – Refer to Section 7
• Traction Power Substations – Refer to Section 10
• Fire Detection and Suppression Monitoring – Refer to Sections 10 and 12
• Grounding – Refer to Sections 10 and 15
• Lighting – Refer to Sections 10, 11, and 15
THIS PAGE INTENTIONALLY LEFT BLANK
18.0 SECURITY

18.1 Introduction

The purpose of this chapter is to establish the standards and design policies for System Security on the Valley Metro LRT Project. System Security shall be provided by a combination of procedures, subsystems and devices to assure security of passengers, employees, equipment, and facilities. Operating procedures shall be developed to maintain the fullest use of the security systems provided.

As part of this effort, Valley Metro developed a System Security Program Plan (SSecPP) to document security mitigations for the Valley Metro LRT Project. The SSecPP addresses threats, which include: criminal activity, terrorism, natural disasters, and emergency response. The designer shall comply with the current edition of the Valley Metro SSecPP.

The security design shall incorporate the following mitigation strategies as an integral part of the design process of new facilities: defensive layering; Crime Prevention Through Environmental Design (CPTED) principles; target hardening; and physical security system elements. Defensive layering provides multiple levels of security in order to slow or prevent an adversary’s access to a site. CPTED strategies include: maximizing visibility of people, parking areas, patron flow areas and building/structure areas; providing adequate lighting and minimizing shadows; graffiti guards, mylar shatter guard protection for glass windows; landscape plantings that maximize visibility; gateway treatments; decorative fencing; perimeter control; minimizing park-n-ride and parking structure access points; elimination of structural hiding places; open lines of sight; and visible stairwells and elevators, meaning the exterior walls are constructed of transparent material. Target hardening employs structural techniques to increase the ability of a building to withstand an explosion while minimizing the loss of life and property damage. Physical security elements are intended to: 1) delay an intruder to allow time to detect them; and 2) inform responders of a penetration of a facility or protected area.

18.2 Passenger Security

Passenger security at stations shall be enhanced by installation of Closed Circuit Television (CCTV) cameras at all stations, in accordance with Chapter 12. Cameras shall be located and aimed to monitor passenger waiting and train boarding areas at the stations. CCTV camera coverage shall encompass ticket vending areas, access ramps, and passenger assistance telephone sites at the stations. Video recording of station activity shall be provided at the Operations Control Center. CCTV cameras and recorders shall be installed on board LRT vehicles. Train borne intercom (passenger to train operator) shall be provided for passengers to notify the operator of any urgent incidents on board the vehicle. The train operator’s radio equipment shall incorporate a priority request send feature to notify rail controllers at the Operations Control Center of any incident or event, which requires immediate attention, and should be placed ahead of “routine” radio calls in the system. Chapter 12 identifies channels on the radio network to be used for conference calls between train operators, line supervisors, security personnel, and dispatchers to permit incidents to be handled apart from normal train control radio traffic.
18.3 Employee Security

The LRV Operator shall be provided the capability of activating a “silent alarm”. Activation of this alarm shall alert the Operations Control Center of a problem on the train. Each LRV operator cab shall be equipped with the silent alarm, and it shall be conveniently located to the operator while in the normal operating position. The LRV silent alarm shall not cause any indication or warning on board the LRV that the alarm has been activated to OCC.

18.4 Facility Security

To monitor unauthorized entry/intrusion, CCTV cameras shall be provided at the Operations and Maintenance Center, yard entrances, employee parking areas, Park and Ride parking lots, Signal houses, TPSS buildings, and storage areas of high value equipment and parts.

Fire and Intrusion alarm systems shall be provided to monitor critical facilities and equipment such as traction power substations, fare collection equipment, and signals and communications equipment as discussed in Chapter 12.

All of the above facilities shall be monitored at the Operations Control Center, except for yard systems (security and fire/intrusion alarms) which shall be monitored at the Maintenance and Storage Facility site.

18.5 System Security Program Plan

The Valley Metro LRT Project has established a set of comprehensive security activities emphasizing the importance of security in all aspects of the Valley Metro LRT Project. These activities have been documented in the System Security Program Plan (SSecPP). The overall goal of the security program is to optimize the level of security in the planning, design, construction, procurement, testing, startup, and operation phases of the Valley Metro LRT Project. This program shall minimize security breaches as well as establish security, in concert with safety as a number one priority.

18.5.1 Purpose of the System Security Program Plan

The purpose of the System Security Program Plan (SSecPP) is to optimize, within the constraints of time, cost, and operational effectiveness, the level of protection afforded to passengers, employees, contractors, first responders, and other individuals near the Valley Metro LRT system.

The SSecPP was developed to comply with the State Safety Oversight (SSO) Agency’s Security Program Standards (SPS) for Rail Fixed Guideway Systems. The SSO Agency responsible for Valley Metro is the Arizona Department of Transportation, ADOT. The SSO SPS is required to comply with FTA regulation, 49CFR, Part 659, Rail Fixed Guideway Systems; State Safety Oversight, U.S. Department of Transportation Federal Transit Administration, current edition.
The SSecPP was developed based on guidance provided in the following FTA documents:

18.5.2 Implementing the System Security Program Plan

The primary security goal of the Valley Metro LRT Project is to design the Valley Metro LRT system to incorporate security concepts and technology.

The designers and contractors shall comply with the SSecPP. They shall participate as members of the Fire/Life Safety and Security Committee (FLSSC), and the Safety and Security Certification Review Committee (SSCRC). For more information on these committees see SSecPP Sections 4.2 and 4.3 and SSPP Section 5.2.6.

In order to achieve the stated security goal, several objectives and their associated tasks have been established. A summary list of the objectives are provided below, and a complete list is provided in SSecPP Section 1.3:

- Security concepts considered in design.
- Personnel realize their security role.
- Maintain records of security breaches.
- Establish liaison with community and law enforcement.
- Maintain an appropriate level of security on construction sites and facilities.

Several of these objectives shall be met by the designers and contractors implementing the Safety and Security Certification Plan (SSCP) as discussed in Chapter 17. A reference used in the development of the SSCP is the Handbook for Transit Safety and Security Certification, DOT-FTA-MA-90-5006-02-01, U.S. Department of Transportation Federal Transit Administration, current edition. Generally, to ensure security concepts are incorporated into the Valley Metro LRT Project, the following tasks shall be conducted: the design criteria shall be reviewed; the designs shall be reviewed; and the construction, procurement, testing, and start-up activities shall be monitored.

Specifically, designers shall:

- Design security into the Valley Metro LRT Project by using such concepts as CPTED and security technology.
- Work with Valley Metro to set security related goals and objectives.
- Incorporate security features into the designs to reduce threats and vulnerabilities, such as: fencing, lighting, guard shacks, security office, gates, sensors or motion detectors, burglar/intrusion alarm systems, Closed Circuit TV (CCTV), public address systems, emergency telephones, silent alarm, card or controlled access.
Participate in the Threat and Vulnerability Assessment Resolution Process. Valley Metro conducted a Threat and Vulnerability Assessment (TVA) for the Central Phoenix/East Valley (CP/EV) and Central Mesa Extension Projects. TVAs shall also be completed for future rail lines or extensions. A TVA shall follow the following basic steps: (1) Identify the Function of Facility or System, (2) Identify critical assessment and loss impact, (3) Conduct Threat Analysis & Assessment, (4) Perform Vulnerability Analysis & Assessment, and (5) Conduct Risk Assessment & Determine Priorities, Identify Potential Countermeasures. Based on Valley Metro’s decisions, the designers shall implement countermeasures throughout the design. If design begins prior to completion of the TVA, Designers shall assume that vulnerabilities, severity of threats, and potential countermeasures will be similar to those documented in previously developed TVAs.

Implement the recommendations included in the FTA’s Transit Security Design Considerations, FTA-TRI-MA-26-7085-05, November 2004.

Use the Transportation Research Board Report Deterrence, Protection, and Preparation as guidance throughout the design.

Comply with APTA security related recommendations.

18.6 Information & Information Systems Security

Many functions within Valley Metro require individuals to be exposed to sensitive data such as personal identification information, procurement documents, and security information. Improper storage or unauthorized disclosure of sensitive information can result in civil and/or criminal penalties, an increased vulnerability to criminal attacks or security breaches on computer systems, or a negative impact on the transit system’s reputation. Contractors shall establish a formal information protection program and plan that at least meets the standards noted below.

Comply with the Code of Federal Regulations regarding the release of transit-related Homeland Security Information.

Security related information which shall be protected includes:

- Assessments, plans or records that reveal the susceptibility of public service agencies to terrorism.
- Drawings, maps or plans that reveal the location and vulnerabilities of critical infrastructure.
- Records or other information that reveal the details of specific emergency response plans.
- Handbooks, manuals or other information detailing procedures to be followed by response agencies in the event of a terrorist attack.
- Records or other information that identify the equipment used for covert, emergency or tactical operations.
Records or other information that compromise radio frequencies, response codes, passwords, or programs used by response agencies.

These types of documents may not be subject to subpoena or discovery and not subject to inspection by the general public.

- Personal, Financial, and Medical Information shall be protected in accordance with federal regulations (e.g. Freedom of Information Act, Privacy Act, Health Insurance Portability and Accountability Act (HIPAA), and Health and Human Services Standards for Privacy of Individually Identifiable Health Information), and numerous Arizona statutes. For guidance see the Arizona Attorney General Agency Handbook, Chapter 6 at http://www.azag.gov/Agency_Handbook/Agency_Hanbook.html.

- Information Technology systems (e.g. computer networks, TVMs) used for information storage shall be protected. Systems used to store and process security and personal information shall be protected, as the stored data would warrant.

- Individuals who require access to sensitive, personal, or proprietary information in order to accomplish their duties shall sign and comply with a non-disclosure agreement. This agreement prohibits an employee from disclosing designated information, even after their employment ceases. The agreement should be reviewed when the employee is terminated or otherwise leaves the company.

18.7 Detailed Security Criteria

Detailed security related criteria for various subsystems of the Valley Metro Project are covered in the applicable section of this Design Criteria Manual. Some specific topics relating to security include:

- Fencing and Barriers – Refer to Sections 3 and 6
- Video Surveillance – Refer to Sections 6 and 12
- Emergency Call Boxes – Refer to Sections 6 and 12
- Publicly Accessible Receptacles – Refer to Section 6
- Security Materials – Refer to Section 6
- Operations Safety and Security – Refer to Section 7
- Intrusion Detection – Refer to Section 12
19.0 STRAY CURRENT AND CORROSION CONTROL

19.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the stray current and corrosion control on the Valley Metro LRT Project.

Specific objectives that have been established with regard to stray current and corrosion control are as follows:

- Maximize design life of light rail facilities by avoiding premature failure caused by corrosion. Minimum usable life shall be 50 years.
- Minimize annual operating and maintenance costs associated with material deterioration.
- Ensure continuity and safety of operations by reducing or eliminating corrosion related failures of light rail facilities and subsystems.
- Minimize possible detrimental effects to LRT facilities, and to facilities belonging to others, caused by stray earth currents generated by operation of a dc powered rail return transit system.

19.2 Scope

Three major categories of corrosion control are addressed in this chapter. These categories are as follows:

- Stray current corrosion control,
- Natural soil corrosion control, and
- Atmospheric corrosion control.

19.3 Pre-Design Surveying and Testing

A Pre-Design Corrosion Control Survey shall be conducted prior to design of a Valley Metro LRT project. This survey shall investigate potential corrosive effects on Valley Metro facilities and equipment as well as the effects of the LRT installation on adjacent facilities and equipment not owned by Valley Metro. The survey shall consist of gathering existing stray current conditions, soil corrosivity and atmospheric conditions or other factors affecting the level of corrosion that the project may experience if such conditions are not mitigated.

The survey shall provide information on equipment, piping, and other fixed facility data gathered from local utilities including any corrosion mitigation techniques currently installed by those entities, as well as any special requirements of those utilities concerning equipment types and installation requirements.

As part of the survey, tests of soil samples for PH, resistivity, chlorides (ppm) and sulfates shall be completed and shall be analyzed for potential corrosive effects. The tests shall be conducted...
on 25 percent of the soil borings (equally spaced) along the project length or every 500 feet, whichever is more frequent and at each proposed TPSS building site. Soil samples shall also be taken at a pipe depth level of approximately 4 feet. Where testing reveals existing stray current, the stray current shall be investigated as to the source, cause, duration and magnitude and shall be thoroughly documented in the report.

Survey results shall be submitted in a report for review and acceptance by Valley Metro prior to design.

19.4 Stray Current Control

The concept of stray current control is to limit the level of stray earth currents at the source, specifically the LRT rail system, rather than trying to mitigate the corresponding effects (possibly detrimental), which may otherwise occur on LRT facilities and other underground structures being impacted by LRT operations. The basic requirements for stray current control are as follows:

- Operate the LRT mainline system without direct or indirect electrical connections between the positive or negative traction power distribution circuits and earth (ground).
- Consider the necessary features of the traction power facilities and/or the trackwork design such that maximum stray earth currents, emanating from the LRT system during normal revenue operations, does not exceed 20 milliamps/1000 feet of track (two rails).
- Final Designer shall also use information contained in the Baseline Corrosion Control Survey Report.
- Conduct periodic rail to earth resistance testing and stray current monitoring after the LRT system is in revenue service.

19.5 Trackwork

Trackwork shall meet the following stray current and corrosion control requirements.

19.5.1 Ballasted Track Construction

Ballasted track construction shall be designed for a minimum effective in service uniformly distributed track-to-earth resistance of 500 ohms per 1,000 feet of track (two rails). Insulated tie plates and fasteners shall be used to provide the required track-to-earth resistance.

19.5.2 Embedded Track Construction

Embedded track construction shall be designed for a minimum effective in service uniformly distributed track-to-earth resistance of 250 ohms per 1,000 feet of track (two rail). This resistance criterion shall be met through appropriate design of insulated track in accordance with the following criteria:

- Electrical insulation shall be provided between rail/fastening assembly and supporting track slab, or between supporting track slab and ground by means of insulating
19.5.3 Direct Fixation Track Construction

Direct fixation track construction shall be designed for a minimum effective in service track-to-earth resistance of 500 ohms per 1,000 feet of track (two rails). This resistance criterion shall be met through appropriately designed insulated track fasteners.

19.5.4 Track-to-Earth Resistance Testing

The stated minimum track-to-earth resistances for the LRT systems shall be measured during the construction (pre-embedment and post-embedment) and pre-start-up phases of the transit system in accordance with ASTM G 165-99 (2005), and shall be submitted to Valley Metro for acceptance.

19.5.5 Special Trackwork and Hardware

19.5.5.1 Embedded Crossovers/Turnouts

Embedded crossovers and turnouts shall be encapsulated and designed for a minimum track-to-earth resistance equal to that of adjacent trackwork.

19.5.5.2 Hardware

Switch machines, signaling devices, communication systems, and any other devices or systems, which may contact the rails, shall be electrically isolated from earth and/or insulated from the rail system. The criteria shall be met using dielectric materials electrically separating the devices/systems from earth and/or the rail system.

19.6 Traction Power Facilities and Subsystems

The traction power facilities shall meet the following stray current and corrosion control requirements.

19.6.1 Traction Power Substations

19.6.1.1 Mode of Operation

Mainline traction power substations shall be operated with an ungrounded negative system. There shall be no direct electrical connections between the negative system and the substation ground system, or any other grounded structures. In addition, mainline operational rectifiers shall be electrically separate from the yard. The shop rectifier shall be grounded to the building ground and separate from the yard rectifier.

19.6.1.2 Stray Current Drainage Facilities

A stray current drainage bus (copper) and drainage circuits shall be installed within each substation's equipment in an area adjacent to the negative bus. The drainage bus shall be electrically insulated from the building structural steel and other grounded facilities within the substation.
Four 2-inch PVC conduits shall be installed from within the substation enclosure, adjacent to the stray current drainage bus, to a pullbox located underground, adjacent to the substation. Insulated cables shall be installed from the stray current drainage bus into the stray current drainage pull box through the PVC conduits. The number and size of cables and the number of drainage circuits shall depend on structures in the area and shall be determined during final design.

19.6.1.3 AC Ground System
From a stray current control standpoint, the incoming AC supply neutral shall be electrically separate from the substation ground system and the DC negative system.

19.6.2 Overhead Contact System
19.6.2.1 Minimum Resistance-to-Earth Requirements
The positive power distribution circuit, consisting primarily of the overhead distribution and contact system, shall have a minimum effective in-service resistance to earth of at least 1 Meg Ohm per 1,000 feet of double catenary system.

19.6.2.2 Catenary System Support Poles
For locations other than at bridge structures, electrical ground facilities for adjacent catenary system support poles shall not be interconnected. This shall eliminate the possible transference of stray earth currents from one portion of the transit system to another because of an electrically continuous ground system.

Separate ground rods and 4/0 AWG bare copper cable shall be provided for each catenary system support pole, except for poles on bridge structures.

Where catenary system support poles will be located on elevated structures other than bridges, the poles shall be grounded individually or in groups.

Where catenary system support poles will be located on bridge structures, grounding provisions shall be made to interconnect each pole to a bonded bridge reinforcement cage, as specified herein.

For OCS bridge soffit catenary supports (embedded and externally attached) under the bridge, provisions shall be made for galvanized catenary support channels, hot-dip galvanized swivel pin and eyebolt, and interconnected through 4/0 AWG copper grounding cable. This 4/0 AWG grounding cable shall be extended to ground rods. Catenary support hardware, concrete inserts, and studs shall be epoxy coated.

19.6.3 Negative Distribution System
19.6.3.1 Negative System to Earth Potential Detection
Facilities shall be installed at each traction power substation to automatically ground the negative bus of the substation rectifier unit during the occurrence of excessive dc potentials on the negative bus. The equipment shall be capable of automatically removing the ground connection upon removal of the excess voltage. The basic operating principles of the fault detection system shall be as follows:
• Should the potential exceed a predetermined set level (not greater than 70 volts), the device shall be activated and thereby connecting the negative system to the substation ground electrode/mat and allowing current to pass from the ground mat to the negative bus through a diode unidirectional type circuit.

• Operation of the device shall activate a visual and audio annunciator device within the substation to show that an unusual condition has occurred.

19.6.3.2 Crossbonds
Crossbonding shall be coordinated with the design in Chapter 10, Traction Power and Chapter 11, Signaling. Crossbond spacing shall not exceed 1,500 feet wherever possible.

19.7 Reinforced Concrete Structures

19.7.1 General Provisions
Corrosion control of reinforced concrete structures including retaining wall structures, embedded track slabs, piping, bridge footing, etc., shall be established by the following provisions:

• Stray current control measures.
• Cement type in accordance with ASTM C-150.
• A minimum of 2 inches of concrete cover on all steel reinforcement when the concrete is poured within a form.
• Minimums of 3 inches cover on all steel reinforcement where the concrete is poured directly against earth.
• Maximum water/cement ratio of 0.45 to 0.50 by weight to establish a low permeability concrete. Additives are allowed for additional strength and corrosion resistance.
• Reduction of air voids to establish a dense concrete structure.
• Chloride from all sources shall be restricted to less than 150 ppm.

19.7.2 Bridge Structures
The following provisions shall be made on ballasted track bridges:

• The structural surface supporting the ballast shall be well drained.
• A high volume resistivity waterproofing membrane shall be provided over the entire surface on which the ballast contacts the structure. The membrane can be fiberglass mesh/poured asphalt systems, rolled membranes, polyurea or other coatings with a demonstrated transit history. Panel products shall not be considered. The membrane system shall have a minimum volume resistivity of 1010 Ω-cm, as measured in accordance with ASTM D257. Membranes where required by the manufacturer shall be protected with a minimum of ½” thick asphaltic protective board immediately after the membrane is installed.
• The reinforcement in the deck slab beneath the ballast shall be made electrically continuous by arc welding the longitudinal bars at the splices.
A non-metallic test station (box) 14 inches x 12 inches x 4 inches deep shall be provided at each end of the structure.

Wires shall be run to the nearest test box. Three ground rods are required at each end of the structure.

At each site end of the structure, a 1½-inch PVC conduit shall be provided between the ground rods and the test box. A 4/0 AWG insulated cable shall be provided in the conduit, connected to the ground rods and extending into the test box.

Wire numbers shall be provided on both ends of the wire, or color-coded wires shall be provided.

Continuous test leads connecting the test leads to a reinforcement bar, the test leads of a continuous reinforcement bar, and a continuous collector bar shall be used.

An extra (non-standard) lap-welded continuous top longitudinal #4 reinforcement bar in the deck slab at each girder and within 1 foot of the inside face of the concrete barriers shall be provided.

Longitudinal bars shall be weld connected to a transverse collect bar at each bent cap, hinge diaphragm, abutment diaphragm, and abutment backwall.

Two 2/0 AWG copper cables shall be exothermic welded to the transverse collector bars in both diaphragms.

Prior to placing ballast, the rebar system shall be tested for continuity. The rebar system resistance shall be within 10% of the theoretical resistance of the system.

The following provisions shall be made on non-ballasted bridges:

The top layer of reinforcement in the slab beneath the trackway shall be made electrically continuous by arc welding the longitudinal bars at the splices.

Collector bars shall be tack welded to the longitudinal reinforcement at each end of the structure. The collector bar shall be connected at pre-stress anchors. The minimum size of the collector shall be the same as the transverse reinforcement.

A test box shall be provided at each end of the structure.

Two 4 AWG insulated wires shall be connected to the collector bars at hinges, end of the structure, and at offsets where continuity cannot be maintained. A minimum of 6 feet should separate the wires wherever possible.

Wires shall be run to the nearest test box.

A ground rod facility shall be provided at each end of the structure.

A minimum of three ground rods are required at each end of the bridge. Long bridges may require additional ground rod arrays. The ground resistance, when measured at the ground rod locations, shall be 5 ohms or less.

At each site end of the structure, a 1½-inch PVC conduit shall be provided between the ground rods and the test box. A 4/0 AWG insulated cable shall be provided in the conduit, connected to the ground rods, and extended into the test box.
Wire tags with numbers shall be provided on both ends of the wire and the wires shall be color-coded.

Prior to placing concrete, the rebar system shall be tested for continuity. The rebar system resistance shall be within 10% of the theoretical resistance of the system.

19.7.3 Retaining Walls

The following provisions shall be made for retaining walls:

All longitudinal bar overlaps in both faces of the wall, including the top and bottom bars of the footing, shall be tack welded to insure electrical continuity. Longitudinal bars in the footing shall be made electrically continuous to the longitudinal bars of the walls. Connect collector bars shall be installed on each side of a break with a minimum of two cables. Provide additional transverse collector bars at intermediate locations to maintain a maximum spacing of 500 feet between collector bars. Provide test facilities at each end of the structure and at intermediate locations to maintain a maximum spacing of 500 feet between test points. The facilities shall house test wires from the collector bars and ground electrode system, if present.

19.7.4 Embedded Track Slabs

The following provisions shall be made on embedded track slabs:

- The top layer of reinforcement in the slab beneath the trackway shall be made electrically continuous throughout the embedded track system by arc welding the longitudinal bars at the splices and installing collector bar(s) at each expansion joint. 1/0 AWG insulated copper jumper cables cable shall be exothermically welded to the collector bar on adjoining track slabs.

- Where the track slab crosses bridges or other structures and the track slab continues on the other side, then 1/0 AWG copper jumpers shall be installed between the two separate track slabs so the slabs are electrically continuous. The jumper cables shall be installed in PVC conduit, and the number of cables required shall be determined by the Corrosion Engineer of Record during final design.

- A test box shall be provided every 400 feet and at each end of the slab. The test box shall be located within the right-of-way of the system to allow testing with minimum impacts to train and vehicular traffic. Preferred locations are on sidewalks or platforms.

- Two 4 AWG insulated wires shall be connected to the collector bars. A minimum of 6 feet should separate the wires wherever possible.

- Wires shall be run to the nearest test box. Wire tags with numbers shall be provided on both ends of the wire and the wires shall be color-coded.

- Prior to the pouring of the concrete, the rebar system shall be tested for continuity. The rebar system resistance shall be within 10% of the theoretical resistance of the system.
19.8 Maintenance Facility

19.8.1 Track

Tracks within the Maintenance Facility (including those inside the main shop and daily inspection buildings) shall be electrically connected to the building grounding system.

19.8.2 Traction Power

The traction power substation shall be a separate buss/yard rectifier (See Section 19.6.1)

19.8.3 Buried Structures

Buried structures, including electrical conduits, shall be protected from stray current corrosion. Protection shall be performed using non-metallic conduits or grounding of metallic conduits.

19.8.4 Overhead Catenary System (OCS)

The overhead catenary system shall be double insulated to prevent stray currents and for personnel safety. All catenary poles shall be grounded through ground rods.

19.9 Corrosion Control for Buried Structures

19.9.1 General

Corrosion control criteria for below grade, buried metallic, and reinforced concrete facilities are dependent on the following:

- Material of construction. Use of aluminum or aluminum alloys for direct burial shall not be permitted.
- Location along the transit route.
- Information contained in the Predesign Corrosion Control Survey.
- Accessibility of the structure after installation.
- A desired useful life of 50 years.
- Maintenance requirements.

Non-metallic materials shall be used in the manufacture and construction of the various facilities where permissible and economically feasible.

19.9.1.1 Pressure Piping

Non-metallic piping shall be used where permissible and economically feasible. Where metallic piping will be used, the requirements specified below shall be met.

19.9.1.2 Cast Iron, Ductile Iron and Steel Pressure Pipe

External surfaces shall have a protective coating with a minimum bulk resistivity of 10 Meg Ohms. Coating types are provided in Section 19.9.3.4.
Two 8 AWG wires shall be provided to test the coated pipe for coating holidays on site. The holiday detector voltage shall depend on coating thickness in accordance with manufacturer’s recommendations, and in accordance with NACE RP0274 and RP0188.

Interconnecting piping and other structures shall be electrically isolated using non-metallic pipe inserts, insulating flanges or couplings. The use of non-metallic, concentric support spacers and watertight end seals shall be used where the piping is routed through a metallic casing. An insulated connection shall be provided at all tie-ins to non-protected facilities.

Electrical continuity shall be maintained through the installation of insulated copper wires across mechanical joints (except those intended to be isolators), which shall be used for cathodic protection. For pipes smaller than 10 inches, two 4 AWG copper wires shall be installed. For pipes larger than 10 inches, three 4 AWG copper wires shall be installed.

Electrical access to the piping through test stations installed at buried insulated connections and along the piping at nominal 150-foot intervals shall be provided. Test stations shall consist of two 8 AWG insulated stranded copper wires exothermically welded to the pipe, and a separate 12 AWG insulated stranded copper wire welded or brazed to a 6-inch length of #6 steel reinforcing located 12 inches below the pipe. The three wires shall be terminated in a permanent, accessible, at-grade metallic curb box, or other Valley Metro acceptable enclosure. Where insulated connections are required, two test wires shall be installed on both sides of the connection and terminated in a common test box.

Cathodic protection of the piping installation shall be provided through a sacrificial anode system. Facilities must also be included in the design of these systems to periodically evaluate the effectiveness of the cathodic protection installation and determine the level of corrosion control. Calculations shall be provided and submitted to Valley Metro for a 50–year anode life.

19.9.1.3 Copper Pipe (Pressure)
Buried copper service pipe shall have an exposed, accessible, insulating union installed where the piping enters through a building wall or floor. A nonmetallic, insulating, watertight seal shall also be installed at each pipe penetration point to effectively separate the piping from building structural elements. Cathodic protection shall be provided where needed based on soil conditions.

19.9.1.4 Reinforced/Prestressed Concrete Pipe (Pressure)
Prestressed concrete cylinder pipe shall not be used in the area of the yard and maintenance shop facilities where an analysis of soil borings indicates the pipe will be exposed to chloride concentrations in excess of 200 ppm.

Design and fabrication of prestressed concrete cylinder pipe shall be in accordance with AWWA Standard C301, with the following provisions:

- A minimum mortar coating thickness of 1 inch.
- The use of 6-guage or larger prestressing wire. The use of Class IV wire shall not be permitted.
- Use of Type II cement, or a sulfate fly ash modified Type II cement or Type V cement, when analysis of soil borings indicates the pipe will be exposed to soil sulfate concentrations in excess of 2,000 ppm, or ground water sulfate concentrations in excess of 1,500 ppm.

- Electrical continuity between steel cylinder and prestressing wires at each end of a fabricated pipe section.

- Provide a minimum of two longitudinal shorting straps for prestressing wire. Number and size of straps shall be determined on an individual basis.

Design of reinforced concrete pipe with steel cylinder including mortar coated steel pipe shall be in accordance with applicable AWWA standards. Cement requirements shall be in accordance with those listed above for prestressed concrete cylinder pipe.

Design and installation of prestressed and reinforced concrete cylinder pipe shall include the following minimum provisions:

- Electrical continuity between adjacent pipe sections by installation of continuity joint bonds. The number and size of the bonds shall be determined on an individual basis.

- In-line electrical insulating devices for electrical insulation of pipe from interconnecting pipe, other structures, and segregation into discreet electrically isolated sections depending upon the total length of piping (see Section 19.9.3.2).

- Permanent test/access facilities to allow for verification of continuity and effectiveness of insulators and mortar coatings. Test facilities shall be installed at all insulated connections and at intermediate locations, either at intervals not greater than 500 feet or at greater intervals determined on an individual basis.

- The need to provide an external protective coating to provide an electrical and waterproof barrier shall be considered on an individual structure basis based upon tested soil and ground water conditions.

19.9.1.5 Gravity Flow Piping (Non-Pressurized)
Gravity fed piping for water drainage systems shall be non-metallic if mechanical considerations and soil conditions are suitable.

19.9.1.6 Corrugated Steel Pipe (Non-Pressure)
Galvanizing, both interior and exterior, shall be to a combined minimum thickness of 2.0 ounces per square foot of coated surface (interior and exterior).

Protective coating with a minimum resistivity of 10 Meg Ohms on the internal and external surfaces shall be of an asphalt or polymeric material. Hot-applied asphalt based coatings shall have a minimum dry film thickness of 50 mils, and an established performance record for the intended service.
19.9.1.7 Cast Iron And Ductile Iron Pipes (Non-Pressure)
Piping in this category shall have an internal mortar lining, and an application of a seal coating on the internal mortar lining and external surfaces (see Section 19.9.3.4). In addition, pipe shall have a polyethylene encasement per the pipe manufacturer's recommendations.

19.9.1.8 Reinforced Concrete Pipe (Non-Pressure)
A water/cement ratio of 0.45 or lower by weight shall be used to establish a low permeability concrete.

A maximum of 150-ppm at chloride concentration shall be allowed in mixing water and all other components and/or mixtures for concrete used in core fabrication and outer mortar coating.

Application of a bituminous seal coating shall be made to the internal and external surfaces of all pipes in this category.

19.9.1.9 Electrical Conduits
Underground electrical power conduits shall be of non-metallic construction (PVC (Schedule 40 min.), fiberglass, or similar material). The two exceptions to this would be for:

- Conduit bends in excess of 22.5 degrees, and
- Risers

Where metallic conduits are necessary, the conduit shall be of galvanized rigid steel construction with a PVC topcoat (10 mils).

19.9.1.10 Piles
The piles that will be embedded in concrete at bent footings shall have an epoxy coating (minimum 20 mils dry film thickness). The coating shall completely cover concrete or metal surfaces, including any exposed reinforcing or prestressing steel.

19.9.2 Facilities Owned by Others

19.9.2.1 Replacement/Relocation of Facilities
Corrosion control requirements for underground facilities, which are owned and/or operated by others, and shall be either relocated or replaced as part of the Valley Metro Project, shall be limited to the minimum requirements necessary for stray current control. The scope of these requirements relates to buried metallic pressure piping only. Specifically, the following minimum criteria shall be met for steel, cast iron, and ductile iron pressure piping:

- Electrical continuity through the installation of insulated copper wire (minimum of two) across mechanical joints (except those intended to be insulators). The minimum wire size shall be 4 AWG stranded copper; larger sizes may be required under special conditions.
- Electrical access to the piping through test stations at 100 to maximum 500 foot intervals. Test stations shall consist of two 12 AWG insulated stranded copper wires exothermically welded to the pipe, and a separate 8 AWG insulated stranded copper wire welded or brazed to a 6-inch length of #6 steel reinforcing bar located 12 inches
below the pipe. The wires shall be housed in a permanent, accessible, at-grade test box or handhole with a metal cover.

The need for additional measures, such as electrical isolation using insulated connection between the new and existing piping and application of a protective coating system, and/or installation of a cathodic protection system, shall be as agreed to by Valley Metro and the individual utility operator. The need for these, and/or other measures, shall be based on the stray current/corrosion control requirements of the specific utility and the established performance record of the various structures within the given environment.

19.9.3 Corrosion Control Components and Subsystems

Site specific provisions for corrosion control components and subsystems for underground piping facilities, which are owned and/or the direct responsibility of Valley Metro, shall be in accordance with guidelines established by NACE RP0169-92 and other applicable reference documents.

19.9.3.1 Electrical Continuity for Piping

Electrical continuity shall be established by exothermically welding two or more 4 AWG insulated stranded copper wires (maximum of 18-inches in length) between or across the pipe joint or coupling that shall be made continuous in accordance with the following criteria:

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Number of Bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>Wires</td>
</tr>
<tr>
<td>12 or less</td>
<td>2</td>
</tr>
<tr>
<td>greater than 12</td>
<td>3</td>
</tr>
</tbody>
</table>

Wires shall have 600 V Type THW insulation.

Verification of pipeline continuity shall be completed prior to backfilling and again prior to final paving.

19.9.3.2 Electrical, Insulating Joints for Piping

Electrical insulating spacers for piping shall be achieved using nonmetallic inserts, insulating flanges, couplings or insulating unions. Concentric support insulating spacers are also required at locations where piping is routed through a casing.

Insulating devices shall have a minimum resistance of 10 Meg Ohms before installation, and shall have mechanical ratings equivalent to the structure in which it is installed.

Insulating devices (except complete non-metallic units) shall be coated internally with a high dielectric coal-tar epoxy for a distance on each side of the insulator equal to twice the diameter of the pipe in which it is used.

Insulating devices (except non-metallic units) buried in soils shall be coated with coal-tar tape or coal-tar epoxy coating with minimum dry film thickness of 20 mils. A wax-tape type coating system may be used with approval of Valley Metro.
Insulating devices installed in chambers or otherwise exposed to partial immersion or high humidity shall have a protective coating such as coal-tar epoxy or equivalent applied to a minimum thickness of 10 mils over all components. A wax-tape type coating system may be used with the approval of Valley Metro.

19.9.3.3 Sacrificial Anodes
Anodes shall consist of a galvanized steel strip core bonded to a magnesium alloy. The specific material used shall be dependent on the particular facility. The core shall extend the full length of the anode. Anodes shall be of the ingot type (meeting a 50 year design life) and shall be of specified weight and shape. Anodes with prepackaged backfill shall consist of a cloth sack containing a specially prepared backfill mix to provide a stable electrical contact between the anode and the soil. Connecting wires shall be single stranded 12 AWG copper, with THW insulation, soldered to the steel core strip and sealed against moisture penetration.

19.9.3.4 Pipeline Coatings
Coatings shall have mechanical characteristics capable of withstanding reasonable abuse during installation and earth stresses after installation for the design life of the pipe.

Generic coatings suitable for use on buried pipelines are as follows:

- Extruded polyethylene/butyl base system,
- Coal-tar pipeline enamels (hot-applied),
- Coal-tar epoxies (two-component systems),
- Polyethylene-backed butyl mastic adhesive tapes (cold-applied),
- Polyethylene encasements systems (as approved by Valley Metro),
- Bituminous mastics may be used for irregular shapes.
- Wax Tape Systems

19.10 Atmospheric Corrosion Control

19.10.1 General
The design of exposed equipment and facilities shall consider the possible impact of atmospheric corrosion conditions, with the primary objective being to ensure that the required service life of a particular facility is not compromised because of corrosion related problems or failures. Specific atmospheric corrosion control aspects, which must be addressed, are included in the following subsections. Designers shall also use information contained in the Predesign Corrosion Control Survey.

19.10.2 Traction Power Substations
Exterior metallic surfaces of the substation enclosures shall be coated with a sacrificial and barrier type coating.
19.10.3 Electrical Equipment & Enclosures

Electrical equipment, such as, but not limited to, switch boxes, transformers, and connection cabinets, shall include the following minimum provisions:

- Enclosures shall be placed in an air-conditioned environment, if possible, otherwise, steel surfaces shall be coated with a barrier coating.
- Vapor phase inhibitors shall be used in sealed cabinets.
- All compressor mounting hardware shall be a high corrosion resistance material such as a high grade stainless steel.

19.10.4 Overhead Contact System Support Structures

19.10.4.1 Poles

Poles, pole base covers, and other rigid support structures shall be galvanized. An acrylic topcoat shall also be applied where aesthetics are considered.

19.10.4.2 Overhead System

Material selection for the overhead current carrying conductors and support system shall be based on value engineering and an established performance record for these facilities in similar types of environments. The support system includes brackets, downguys, cantilevers, bracket arm, headspace, cross-spans, terminations, and counterweights. The specific materials selected shall be of adequate corrosion resistance to ensure that the required service life of 50 years shall not be compromised because of corrosion related problems. The materials shall not require maintenance coatings or other procedures relating to corrosion control during the design life of these facilities.
20.0 PUBLIC ART

20.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the design of public art at the Valley Metro LRT stations, transit centers, park and ride sites and other LRT facilities located outside of the right-of-way. In general, art elements shall adhere to the standards set forth in Chapter 6, Station Design. Art on the system shall maintain the principles set out in the Urban Design Guidelines for the Central Phoenix/East Valley Rail Project (June 2001), and the Climate, Comfort and Health Report, Central Phoenix/East Valley Light Rail Transit (May 2001).

Because artwork is expected to be unique for each site, it is impossible to completely anticipate or regulate standards for as yet un-designed work. Therefore, all designs must be approved by Valley Metro for safety, ease of maintenance and adherence with the rules of transit operations. Design aesthetic will be approved by the Regional Rail Arts Committee, the Station Art Review Committee and at public meetings.

20.2 Codes and Standards

Artwork shall conform to the requirements of the codes (including ordinances), regulations (including general rules and safety orders), and standards of the city affected by the artwork. In general, artwork shall adhere to the same codes and standards found in Chapter 6, Station Design. However, artwork that is not structural in nature may be exempt from some aspects of code compliance if deemed appropriate by the City affected and by Valley Metro.

The latest edition of the code, regulation and standard that is applicable at the time the design shall be used. If a new edition or amendment to a code, regulation or standard is issued before the design is completed, the design shall confirm to the new requirements(s) to the extent practical or required by the government authority enforcing the code, regulation or standard changed.

Comply with current FTA requirements for projects funded by FTA.

20.2.1 Permitting Process

Permitting Process – artwork shall be included in the station design permitting process, and reviewed at the Pre-Application meeting, the 95% design submittal and the 100% design submittal as outlined in Chapter 6, Station Design. The Designer shall be responsible for all permit fees.

20.2.2 Engineering Requirements

Any art element standing over 5’ in height or suspended over 5’ in height is required to be engineered by an Arizona State licensed structural engineer with stamped drawings submitted for final design.
Any foundation required for a standing artwork will be designed and engineered by the Station Designer’s licensed structural engineer and combined with the station or light rail site structural foundation submittal for review and permitting.

20.3 **Artwork Guidelines**

Dimensional requirements for artwork are impossible to predict however, all art elements must support or not impair the functions of the station or light rail site. Artwork can be placed anywhere along the platform or atop the station or light rail site architecture so long as it does not impede the pedestrian flow, unacceptably reduce visibility for the rider, light rail vehicle operator or street vehicle operators, or unacceptably diminish the efficacy of any functional light rail element.

20.3.1 **Vertical and Horizontal Clearances**

Artwork shall be designed to discourage climbing both on the art element itself as well as adjacent station elements.

Artwork shall maintain a safe minimum distance from the Overhead Catenary System wires.

Artwork shall be placed so as not to block the station overhead messaging systems or audio systems.

Artwork shall not impede the flow of traffic along the travel lanes and entrance/exit lanes. Artwork shall follow Chapter 6, Station Design and ADA Standards for Accessible Design Section 4.2 and 4.3 in regards to maintaining proper clearance for all pedestrians.

20.3.2 **Protruding Objects**

Art objects shall not have sharp or hard edges or appendages which present a trip hazard or which could poke, block, or otherwise impede anyone walking or standing in proximity of the artwork. Artwork shall comply with ADA Standards for Accessible Design Section 4.2, 4.3, and 4.4 where applicable.

20.3.3 **Safety and Security**

Artwork shall conform to Crime Prevention Through Environmental Design (CPTED) and ADA Standards for Accessible Design requirements for safety and security at station or light rail sites.

Any opaque surface more than 3’ x 3’ behind which someone could hide shall be perforated or in some way made more transparent so that there is no suggestion of danger.

Artwork shall be placed so as not to block the station security cameras or impede emergency personnel.

Artwork shall discourage use by an attacker to hide, or a terrorist to plant a bomb.

For safety, liability and other reasons, complete physical accessibility by the public is not required for art elements.
20.3.4 Grounding

Metal artwork shall be grounded. The Station Designer shall provide details for the connection of the artwork to the ground grid. The location and details of the attachment of the ground wire to the artwork shall be by Artist. The Station Designer shall determine whether any art element requires grounding and shall design and install the grounding. The location of the grounding wire or mechanical connection to the art piece shall be coordinated with the artist.

20.3.5 Architectural or Structural Connections

All connections between artwork and any elements on the station or other LRT sites shall be collaboratively designed by Artist and the Station Designer. The Station Designer shall assume responsibility for the design of the connections.

20.4 Art Elements

20.4.1 Artwork as Functional or Station/LRT Site Elements

Art elements which are designed to enhance or replace standard elements of the stations or other LRT sites must maintain the functionality of those items they are affecting. This artwork shall comply with the criteria in Chapter 6, Station Design.

20.4.2 Art Lighting

Artwork shall be visible on the station or LRT site at night. Artwork that is not adequately illuminated by standard station or LRT site lighting shall require additional lighting. The Designer shall collaborate with the Artist to provide as much of the general art lighting as possible. Where lighting is integral to the design, or specific, non-standard lighting is required, the contractor shall review artist designed lighting to ensure adherence to all applicable codes and integration into the station or LRT site electrical and utility drawings.

Artist designed lighting shall give consideration to maintenance and bulb replacement. Where applicable, lighting shall adhere to standards discussed in Chapter 15, Facilities Electrical. Lighting system design shall ensure that no objectionable stray light and glare spills over to adjacent neighborhoods. Where possible, Artists will use the same lighting fixture or bulbs that are used elsewhere on the system.

20.4.3 Water Features

Art elements shall not include any additional water source to that which is already standard on the station or LRT site. Any use of water shall not diminish the original purpose of the water source. No artwork shall adversely affect the function or maintenance of the drinking fountains, irrigation, or drains.

20.4.4 Landscaping Elements

Artists may work with the Designer to enhance or replace landscaping elements provided that they comply with Chapter 6, Station Design.
20.4.5 Art Signage

For each station platform, 1 artist information sign shall be located near the patron information maps.

For artwork at LRT sites, 1 artist information sign shall be located in a spot adjacent to the artwork accessible by pedestrians. Where possible, the art information sign shall be located in a consistent location at all similar LRT sites.

20.5 Art Materials

The following basic requirements and criteria have been established for artwork in public areas within the system. While aesthetic concerns are the basic force behind all art elements, safety, durability, minimal heat gain, and ease of maintenance are essential attributes which must be weighed equally. Identifiable hazards shall not be incorporated into any artwork design. See the Urban Design Guidelines for additional requirements.

20.5.1 Safety

20.5.1.1 Fire Resistance and Smoke Generation

Hazards from fire shall be reduced by using finish materials with minimum burning, smoke generation and toxicity characteristics consistent with requirements as noted in governing building and NFPA Codes for flammability.

20.5.1.2 Attachment

Hazards from dislodgment due to temperature change, vibration, wind, seismic forces, aging, or other causes shall be reduced by using proper attachments and adequate bond strength.

20.5.1.3 Slip-Resistant Walking Surfaces

Pedestrian safety shall be increased and the presence of individuals with disabilities shall be recognized by using floor materials with slip-resistant qualities complying with ADA Standards for Accessible Design Section 4.5. The following static coefficients of friction as defined in ASTM C1028 shall be provided as a minimum.

<table>
<thead>
<tr>
<th>Surface Description</th>
<th>Coefficient of Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public horizontal surfaces</td>
<td>0.6</td>
</tr>
<tr>
<td>Non-public horizontal surfaces, exterior</td>
<td>0.6</td>
</tr>
<tr>
<td>Non-public horizontal surfaces, interior</td>
<td>0.5</td>
</tr>
<tr>
<td>Platform edge strips</td>
<td>Textured visually contrasting material conforming to ADA Standards for Accessible Design Section 4.29</td>
</tr>
<tr>
<td>Stairs, ramps, sloping sidewalks</td>
<td>0.8</td>
</tr>
<tr>
<td>Area around equipment</td>
<td>0.6</td>
</tr>
</tbody>
</table>
20.5.1.4 Electrical Characteristics
The platform/safety edge strip shall be electrically insulated. No grounded metallic surface shall be installed within 5'-0" of the platform edge.

20.5.1.5 Durability
Provide materials with excellent wear, strength, and weathering qualities with due regard for both initial and replacement costs. The materials must be colorfast, maintain their good appearance throughout their useful life, and be able to conform to the hot desert environment.

20.5.2 Ease of Maintenance

20.5.2.1 Cleaning
Facilitate cleaning and reduce cleaning costs by selecting where possible materials that do not soil or stain easily, have surfaces that are easily cleanable in a single operation with the use of standard equipment and cleaning agents, and on which minor soiling is not apparent.

Artwork shall not encourage the collection of refuse in or provide areas with little or no access by maintenance crews to clean out accumulated refuse.

20.5.2.2 Repair or Replacement
While artwork is generally made up of one-of-a-kind elements, where possible, maintenance costs shall be minimized by using standardized materials that, if damaged, can be easily repaired or replaced without undue interference with the operation of the system. Spare quantities shall be provided for tile and other applied unit materials in an amount equal to approximately 2 percent of the total material used. Where elements are unique or hand crafted, every effort shall be made to make the conservation or replacement of the elements as manageable as possible.

20.5.2.3 Resistance to Vandalism
Materials and details shall be provided that do not encourage vandalism and that are difficult to deface, damage or remove.

All surfaces exposed to the public shall be finished in such a manner that the results of casual vandalism can be readily removed with common maintenance techniques. Anti-graffiti coating shall be provided as necessary.

20.6 List of Potential Finish Materials
This list is not definitive but shall be used as a guide for standard acceptable finishes that apply to all areas of public contact. Where artists desire a monolithic treatment to a station area such as paving or canopies, they must collaborate with the Design Consultant and adhere to the guidelines listed in Chapter 6, Station Design.

Under limited and special circumstances automotive or tempered glass may be used, however care must be taken that it does not become a target for vandalism.
Because of special conditions, items listed as “unacceptable” or “not acceptable” may be approved on a case-by-case basis if they meet the intent of this document and Urban Design Guidelines.

20.6.1 Platform Art Paving Unit Materials

- **Acceptable**
 - Quarry tiles (non-slip).
 - Paver brick (dense hard).
 - Granite or other natural or manufactured comparable stone
 - Selected artificial stone materials.
 - Precast concrete
 - Small terrazzo tiles (rough or with non-skid coating)

- **Not Acceptable**
 - Resilient tile and sheet products
 - Marble
 - Carpet
 - Wood products

- **Preferred Surfaces and Fixtures**
 - Stainless steel (areas of high pedestrian use)
 - Bronze
 - Stone or granite
 - Porcelain enamel covered steel
 - High fired tile
 - Color-anodized aluminum (where there is a low degree of pedestrian touch)
 - Stainless steel top rail with galvanized steel below
 - Powder coated steel or aluminum (with field touch-up capabilities)

- **Unacceptable surfaces**
 - Uncoated fabric
 - Ordinary plastics
 - Un-insulated metal panels
 - Wood or wood-based products
21.0 SYSTEM INTEGRATION

21.1 Introduction

The purpose of this chapter is to establish the standards and design policies for the implementation of a system integration program that applies a formal design management process to the integration of the designs between Systems elements, between Facilities elements, and between Facilities and Systems elements, including but not limited to: traction power, train signals, traffic signals, communications, fare collection, vehicle, civil, electrical, architectural, mechanical, trackwork, artwork, and other systemwide items. Some of the major integration activities are described below.

21.1.1 Facilities/Systems Integration

Designs shall assure that the Facilities are fully integrated with the Systems designs and incorporate all provisions required to support and accommodate systems equipment and cabling. In this context, Facilities include any non-Systems element of the Project such as architectural, civil, structural, and electrical/mechanical work.

21.1.2 Trackwork/Systems Integration

Designs shall assure that the trackwork is fully integrated with the Systems design and incorporates all provisions required to support and accommodate Systems equipment and cabling, including but not limited to, dc feeder stub-ups and terminations, negative return cables, impedance bonds, track circuit connections, and other wayside equipment.

21.1.3 Systems/Systems Integration

Designs shall assure that each Systems design is fully integrated with each other and incorporate all provisions required to support systems equipment and cabling, hardware interfaces, and software interfaces such as communications protocols.

21.1.4 Facilities/Facilities Integration

Designs shall assure that each Facilities related design (e.g. civil, trackwork, electrical, architectural, mechanical, artwork) is fully integrated with each other and incorporate all provisions required to support each other.

21.2 Systems Integration Plan

The Designer shall develop a System Integration Plan which establishes parameters and guidelines for integrating the Project as a whole and describes the process by which interfaces will be managed throughout the Project, beginning at design inception through construction, testing and commissioning. The Plan shall describe how the System Integration Management Tool shall be implemented and utilized including:

- Establishing and updating descriptions of the interfaces between Systems elements, between each Systems and Facilities element, between Facilities elements, and between each Systems element and Valley Metro-furnished equipment or system.
Defining how each element will be identified and assigned in the management tool, and how each interfaces will be coordinated and checked during the design, manufacturing and construction phases of the Contract.

Providing a means for verifying that the integrated elements are functioning as designed during the installation, testing, operational phases of the Contract.

21.2.1 System Integration Management Tool

The Designer shall provide and continuously update a System Integration management tool that is database driven, using a standard product on the market designed for this type of function. The tool shall track responsible parties involved in the design of physical, logical, and functional interfaces and establishes all of the requirements of each party involved, using established Interface Control Procedures. The tool shall provide a verifiable record of status of each interface. The tool shall be maintained throughout the life of the Project.

21.2.2 Interface Matrix

As part of the System Integration Plan, the Designer shall develop a comprehensive list of functional areas, both new and existing, that constitute the completed Project. This matrix shall identify every functional area against every other functional area. Each interface shall be provided an interface name and identification number to be used for subsequent tracking using an Interface Data Sheet (IDS).

21.2.3 Interface Control Procedures (ICPs)

As part of the System Integration Plan, the Designer shall develop procedures to define both physical and functional interrelationships and interfaces among the components and systems of the Project, and to define how to resolve all relevant interfaces; assure the implementation of interface requirements; and eliminate potential conflicts. The ICPs shall identify each of the points of interface between functional areas, define the physical and functional relationships and performance requirements at each of those interfaces and relate them to design criteria, codes, and standards, provide assurance that parties to an interface have discussed and agreed to the relationships, requirements, and design, and identify the effects of proposed changes to an interface upon the designs of supporting interfaces. An ICP database in the System Integration management tool shall be used to maintain documentation of each interface.

21.2.4 Interface Database

The ICP database shall include the following elements, at a minimum, for each interface:

- Title
- Description of the interface, including functional requirements and design characteristics, and corresponding schedule information
- References to interface sketches, specifications, and drawings, as applicable
- Organization unit and name of person responsible for design from each side of the interface
- Indication of acceptance of the current design information
• Interface status
• Action item status
• Comments/Open Issues

21.2.5 Report Production

The System Integration Management Tool support software shall provide the ability to produce reports from the interface database on status, responsible parties, action items (open and closed), document(s) affected by an interface, etc.

21.2.6 Interface Data Sheet (IDS)

For each functional interface, an IDS shall be developed which describes the nature of each corresponding interface. The IDS shall include identification of the design or other group responsible for the interface involved and all the known requirements and information, including schedule requirements, for the progress of design and construction. Each involved party with the interface shall be required to provide concurrence with the interface information and provide verifiable documentation the interface has been properly addressed, or identify how and when it will be.

21.2.7 Contractors

Contractors who participate in detailed design, construction, or installation shall also be responsible for following the same procedures to identify and track interface changes during the construction phase of the Project. Any such changes made shall be performed under the appropriate Project configuration control procedures.
REQUEST FOR REVISION/DEVIATION TO THE DESIGN CRITERIA MANUAL

DESIGN & CONSTRUCTION

1.0 PURPOSE

The purpose of this document is to establish ownership for the Light Rail Project Design Criteria Manual, describe the use of the manual, and to establish a process for revising or deviating from the Manual.

2.0 SCOPE

This process applies to all revisions and deviations to the Light Rail Project Design Criteria Manual.

3.0 RESPONSIBILITIES

Anyone can recommend a revision to or deviation from the Design Criteria Manual.

Valley Metro’s Facilities Project Manager; Project Engineer, Project Architect, or Project Systems Engineer, as applicable; and the, Architectural Manager (AM), or Systems Manager (SM), as applicable, shall be responsible for concurring with proposed revisions/deviations to the Design Criteria Manual.

The Division Director shall be responsible for approving revisions/deviations to the Design Criteria Manual.

Valley Metro Project Manager shall be responsible to implement all revisions/deviations, and shall coordinate the revisions/deviations with the affected members of the design team.

4.0 PROCEDURE

4.1 OWNER OF DESIGN CRITERIA MANUAL

The Director of Design and Construction shall be the owner of the Design Criteria Manual and, following the required reviews and approvals, shall approve and authenticate the Manual and revisions thereto by signing and dating the title page prior to controlled distribution.
4.2 USE OF DESIGN CRITERIA MANUAL

The Design Criteria Manual contains the design standards and policies for final design of Valley Metro LRT projects. Project designers shall consult the Manual, identify the applicable design criteria for their scope of work, and assure their designs incorporate or meet the design criteria or authorized deviations there from.

4.3 REVISE THE DESIGN CRITERIA MANUAL

A revision to the Design Criteria Manual may be necessary where standards need to be updated or a generic change applicable to the whole Project is appropriate.

A request for a revision to the Design Criteria Manual can be made by anyone on the Light Rail Project. A request is made by filling out a Revision/Deviation Request (DR) Form (see Attachment A). Sufficient documentation to show the need for the revision should be attached to the form.

The form with attachments shall be submitted to Valley Metro’s Project Manager (PM) for review and concurrence. If accepted, the form shall be forwarded to Valley Metro’s design consultant for review and concurrence. Once accepted by Valley Metro, it shall be forwarded to the Project Engineer, or the Project Architect (PE/PA), or Systems Engineer (SE), as applicable, for review and concurrence.

The PM/PE/PA/SE shall review the request and, once accepted, shall forward it to the FM/AM/SM for review. If the request is accepted, the form shall be submitted to the Director of Design and Construction for review. If approved, the completed request shall be forwarded to Document Control for distribution to all personnel listed on the form and to the Document Control file for Design Criteria Manual revisions/deviations. For approved changes, Valley Metro’s Project Manager shall be responsible for updating the Design Criteria Manual, and sending the revised pages to Document Control for distribution to controlled copyholders.

4.4 DEVIATIONS TO DESIGN CRITERIA MANUAL

Specific exceptions or deviations to the Design Criteria Manual may be taken in special cases without revising the Manual. In addition, identification of Concurrent Non Project Activities (CNPA) can be identified without revising the manual. Project designers are responsible for identifying necessary departures from the Manual and bringing it to the attention of applicable management using the Revision/Deviation Request Form. Sufficient documentation showing the need for the deviation should be attached to the form.
The review and approval process is the same as for revising the Design Criteria Manual (see Section 4.3).

If approved, the completed form shall be forwarded to Document Control for distribution to all the personnel listed on the form and to the Document Control file for Design Criteria Manual revisions/deviations.

For approved deviations, Valley Metro’s Project Manager shall be responsible for notifying the applicable requester, and other applicable designers, of the approved deviation. The Design Report for a Submittal to the Agency that incorporates the approved deviation shall identify the deviation and reference the approval thereof.

5.0 RECORDS

A copy of the completed “Valley Metro Design Criteria Manual Revision/Deviation Request Form” shall be placed in the Document Control files.

6.0 REFERENCES

Design Criteria Manual, 1.2, Introduction

Design Criteria Manual, 1.7, Concurrent Non Project Activities (CNPA)

Project Management Plan

7.0 ATTACHMENTS

Attachment A – “Valley Metro Design Criteria Manual Revision/Deviation Request Form”
<table>
<thead>
<tr>
<th>REQUESTOR</th>
<th>PRINT NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
</table>

DESCRIPTION:

BACKGROUND:

JUSTIFICATION: (Attach additional Sheets if Necessary)

SCHEDULE IMPACT:
- [] YES
- [] NO

QUALITY IMPACT:
- [] YES
- [] NO

COST IMPACT:
- [] YES
- [] NO

SAFETY IMPACT:
- [] YES
- [] NO

CONCURRENCE/APPROVAL

VALLEY METRO PROJECT ENGINEER/ARCHITECT/SYSTEMS ENGINEER:
- PRINT NAME
- SIGNATURE
- DATE

VALLEY METRO PROJECT MANAGER (FACILITIES ENGINEERING):
- PRINT NAME
- SIGNATURE
- DATE

VALLEY METRO DIRECTOR OF DESIGN AND CONSTRUCTION:
- PRINT NAME
- SIGNATURE
- DATE
VALLEY METRO - DRY UTILITY RELOCATION

PERMIT REVIEW AND CLEARANCE FORM FOR

<PROJECT NAME>

<table>
<thead>
<tr>
<th>UTILITY COMPANY</th>
<th>JOB NO.</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHONE OFFICE</td>
<td></td>
<td>PHONE CELL</td>
</tr>
<tr>
<td>FAX NUMBER</td>
<td></td>
<td>EMAIL ADDRESS</td>
</tr>
</tbody>
</table>

DESCRIPTION OF PROPOSED UTILITY RELOCATION

[] **DRAWINGS ATTACHED**

Design Engineer MUST RETURN FORM, COMMENTS AND PLANS TO VALLEY METRO UTILITY MANAGER BY DUE DATE

DISCIPLINES

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>PRINT NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEWER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVIL, Traffic Signals, Roadway, Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUTHORIZED FOR RELEASE

Design Engineer

[] **ACCEPTED**

[] **ACCEPTED AS NOTED**

[] **AMEND & RESUBMIT (see comments)**

PRINT NAME

SIGNATURE

DATE

COMMENTS / REMARKS

COMPLETED BY - VALLEY METRO UTILITY MANAGER

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>SIGNATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>